ELECTRICAL SERVICE AND METERING INSTALLATIONS

GEORGIA POWER
A SOUTHERN COMPANY

2007 Edition

COPYRIGHT NOTICE: Copyright © 2007 Southern Company. All Rights Reserved.

All materials are the copyrighted property of Southern Company, its subsidiaries, affiliated companies and/or third-party licensors. All trademarks, service marks, and trade names are proprietary to Southern Company, or its subsidiaries or affiliated companies and/or third-part licensors.

The materials may not modified, copied, distributed, transmitted, displayed, performed, reproduced, published, licensed, nor derivative works created, without the expressed, written permission from Southern Company.
NOTICE:
THIS DOCUMENT IS SUBJECT TO CHANGE AT ANY TIME.

FOR THE LATEST REVISION TO THE BLUE BOOK
PLEASE VISIT:

www.georgiapower.com/builder

Applications for Service:
 Customer Care Center
 Builders Line 1-877-365-3276
 Residential Needs 1-888-660-5890
 Business Needs 1-888-655-5888

Outage Reporting 1-888-891-0938
POLICY STATEMENT

ELECTRICAL SERVICE AND METER INSTALLATIONS BOOK

This book represents the present policies and objectives of the Georgia Power Company in the revenue metering area. It is intended to provide guidance regarding the design and installation of electric services and revenue metering equipment on the Georgia Power Company system.

When SAFETY is involved the policies contained in this book shall be followed.

The policies and procedures in this book are generally broad enough to meet our customer’s needs, while ensuring prompt service and accurate metering. It is impossible, however, to cover all circumstances that may be encountered in providing electric service to our customers. It is necessary that common sense and good engineering practices be used where specific situations are not addressed by this book, or where customer service is adversely affected by these procedures.

There may be two or more methods of service from which to choose. **Before selecting a particular method, purchasing, or installing any equipment the Company and the customer should thoroughly discuss the alternatives to be sure the method selected is in the best interest of all concerned.** Open, two-way communication between the Company and our customers is the best way to prevent misunderstandings, delays, and unnecessary expense.

While every effort has been made to ensure that the policies and procedures in this book are up to date at the time of publication, circumstances such as legal considerations, new technology, or changes in Company policy, may require modifications from time to time.

Please contact the nearest Company office if you have any questions concerning the latest application of any portion of this book.

Approved:

Tami M. Barron
Distribution Ops & Services GM

Ellery E. Queen
Metering Services Manager

Distribution Operations & Services

Metering Services
FOREWORD:

This book is intended to provide guidance regarding the design and installation of electric services and revenue metering equipment on the Georgia Power Company system.

Suggestions for improvement to this manual are welcome. You are invited to submit recommendations to this book. Please include complete information about the proposed change, the reason(s) for the proposed change, and an address or telephone number where you can be contacted in case of questions.

For proposed changes, please submit via e-mail at:

gpcbluebook@southernco.com

Or contact:

Georgia Power Company
Metering Services Department
62 Lake Mirror Rd, Bldg. 2C, BIN 50023
Forest Park, Georgia 30297-1691
Toll Free: 1-800-831-0629
Phone: 404-608-5151

This manual was processed and approved for submittal per ISO 9001-2000 guidelines and at the time the committee approved this manual, the BlueBook committee had the following members:

Ellery E. Queen, Manager, Metering Services
Larry A. Barto, Metering Services Engineering Manager

Bertram J. Hooker, Chairman, BlueBook Committee
David W. Philpott
Roger D. McDaniel
John D. Williams (Dan)
Millard M. Mize Jr. (Skipper)
Phillip W. Akins
Johnny L. Stansell
Leonard W. Shirley, (Bill)
Tony C. Moore
Russell A. Herrington
Eric L. Arnold
Keith L. Reese

BlueBook 2007 Document Committee:
Bertram J. Hooker, John D. Williams (Dan), Jennifer L. Santander, and Julie A. Freshwater
Terry L. Penn- Editor- Final Document
Ceus P. Armand (Pierre) – Blue Book CAD Drawings
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>7</td>
</tr>
<tr>
<td>2.0</td>
<td>7</td>
</tr>
<tr>
<td>3.0</td>
<td>10</td>
</tr>
<tr>
<td>4.0</td>
<td>12</td>
</tr>
<tr>
<td>5.0</td>
<td>12</td>
</tr>
<tr>
<td>6.0</td>
<td>13</td>
</tr>
<tr>
<td>6.1</td>
<td>17</td>
</tr>
<tr>
<td>7.0</td>
<td>18</td>
</tr>
<tr>
<td>8.0</td>
<td>18</td>
</tr>
<tr>
<td>9.0</td>
<td>19</td>
</tr>
<tr>
<td>10.0</td>
<td>27</td>
</tr>
<tr>
<td>11.0</td>
<td>28</td>
</tr>
<tr>
<td>12.0</td>
<td>29</td>
</tr>
<tr>
<td>12.1</td>
<td>32</td>
</tr>
<tr>
<td>13.0</td>
<td>32</td>
</tr>
<tr>
<td>13.1</td>
<td>32</td>
</tr>
<tr>
<td>14.0</td>
<td>32</td>
</tr>
<tr>
<td>14.1</td>
<td>34</td>
</tr>
<tr>
<td>15.0</td>
<td>35</td>
</tr>
<tr>
<td>15.1</td>
<td>37</td>
</tr>
<tr>
<td>15.2</td>
<td>38</td>
</tr>
<tr>
<td>15.3</td>
<td>39</td>
</tr>
<tr>
<td>15.4</td>
<td>40</td>
</tr>
<tr>
<td>15.5</td>
<td>42</td>
</tr>
<tr>
<td>15.6</td>
<td>44</td>
</tr>
<tr>
<td>15.7</td>
<td>46</td>
</tr>
<tr>
<td>15.8</td>
<td>48</td>
</tr>
<tr>
<td>15.8.1</td>
<td>50</td>
</tr>
<tr>
<td>15.8.2</td>
<td>51</td>
</tr>
<tr>
<td>15.9</td>
<td>52</td>
</tr>
<tr>
<td>15.10</td>
<td>54</td>
</tr>
<tr>
<td>15.11</td>
<td>58</td>
</tr>
<tr>
<td>15.12</td>
<td>62</td>
</tr>
<tr>
<td>15.13</td>
<td>64</td>
</tr>
<tr>
<td>15.14</td>
<td>66</td>
</tr>
<tr>
<td>15.15</td>
<td>68</td>
</tr>
<tr>
<td>15.16</td>
<td>70</td>
</tr>
<tr>
<td>15.17</td>
<td>74</td>
</tr>
<tr>
<td>15.18</td>
<td>78</td>
</tr>
<tr>
<td>15.19</td>
<td>79</td>
</tr>
<tr>
<td>15.20</td>
<td>80</td>
</tr>
<tr>
<td>15.21</td>
<td>81</td>
</tr>
<tr>
<td>15.22</td>
<td>82</td>
</tr>
<tr>
<td>15.23</td>
<td>83</td>
</tr>
<tr>
<td>15.24</td>
<td>84</td>
</tr>
<tr>
<td>15.25</td>
<td>86</td>
</tr>
<tr>
<td>15.26</td>
<td>88</td>
</tr>
<tr>
<td>15.27</td>
<td>89</td>
</tr>
<tr>
<td>15.28</td>
<td>91</td>
</tr>
</tbody>
</table>

Note: The table continues with more sections and pages.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>THIS SECTION LEFT INTENTIONALLY BLANK</td>
</tr>
<tr>
<td>16.2</td>
<td>4-WIRE, 3-PHASE, DELTA SERVICE, (225A OR LESS), (SEE POWER LEG)</td>
</tr>
<tr>
<td>16.3</td>
<td>4-WIRE, 3-PHASE, OH SERVICE, (225A OR LESS)</td>
</tr>
<tr>
<td>16.4</td>
<td>4-WIRE, 3-PHASE, UG SERVICE, (225A OR LESS)</td>
</tr>
<tr>
<td>16.5</td>
<td>4-WIRE, 3-PHASE, (277/480V), (225A OR LESS)</td>
</tr>
<tr>
<td>16.6</td>
<td>4-WIRE, 3-PHASE, POLE INSTALLATION, (225A OR LESS), (CUSTOMER OWNED POLE)</td>
</tr>
<tr>
<td>17.0</td>
<td>3-WIRE TRANSFORMER RATED DRAWINGS, (ABOVE 225A)</td>
</tr>
<tr>
<td>17.1</td>
<td>3-WIRE, OH SERVICE, TRANSOCKET, WALL MOUNTED, (401A TO 600A)</td>
</tr>
<tr>
<td>17.2</td>
<td>3-WIRE, OH SERVICE, (ABOVE 600A), (USING CURRENT XFMR’S)</td>
</tr>
<tr>
<td>17.3</td>
<td>3-WIRE, UG SERVICE, (ABOVE 600A), (USING CURRENT XFMR’S)</td>
</tr>
<tr>
<td>17.4</td>
<td>3-WIRE, MOUNTING OF METER CABINET ON (CUSTOMER OWNED POLE)</td>
</tr>
<tr>
<td>17.5</td>
<td>3-WIRE, OH SERVICE, (ABOVE 600A), (CUSTOMER OWNED POLE)</td>
</tr>
<tr>
<td>17.6</td>
<td>3-WIRE TRANSFORMER RATED DRAWINGS, (ABOVE 225A)</td>
</tr>
<tr>
<td>18.1</td>
<td>4-WIRE, 3-PHASE, TRANSOCKET ON PEDESTAL, UG XFMR., (226A TO 600A)</td>
</tr>
<tr>
<td>18.2</td>
<td>4-WIRE, 3-PHASE, OH TO OH, (226A TO 600A), (CUSTOMER OWNED POLE)</td>
</tr>
<tr>
<td>18.3</td>
<td>4-WIRE, 3-PHASE, OH TO UG, (226A TO 600A), (CUSTOMER OWNED POLE)</td>
</tr>
<tr>
<td>18.4</td>
<td>4-WIRE, 3-PHASE, TRANSOCKET, (226A TO 600A), WALL-MOUNT, PER Svc. Point</td>
</tr>
<tr>
<td>18.5</td>
<td>3-PHASE METER INSTALLATION, COMMON DISTRIBUTION POINT</td>
</tr>
<tr>
<td>18.6</td>
<td>4-WIRE, 3-PHASE, TRANSOCKET, OH SVC., (226A TO 600A), PREFERRED METHOD</td>
</tr>
<tr>
<td>18.7</td>
<td>4-WIRE, 3-PHASE OH SERVICE, MAST MOUNTED CT’S, (ABOVE 600A)</td>
</tr>
<tr>
<td>18.8</td>
<td>4-WIRE, 3-PHASE OH SERVICE, CT’S ON BUILDING SIDE, (ABOVE 600A)</td>
</tr>
<tr>
<td>18.9</td>
<td>4-WIRE, 3-PHASE, PADMOUNT TRANSFORMER, (ABOVE 600A)</td>
</tr>
<tr>
<td>18.10</td>
<td>4-WIRE 3-PHASE UG, (ABOVE 600A) USING CURRENT XFMR’S</td>
</tr>
<tr>
<td>18.11</td>
<td>4-WIRE, 3-PHASE, CT INSTALLATION, (ABOVE 600A), (CUSTOMER OWNED POLE)</td>
</tr>
<tr>
<td>18.12</td>
<td>4-WIRE, 3-PHASE, FARM SERVICE POLE, (ABOVE 225A)</td>
</tr>
<tr>
<td>18.13</td>
<td>4-WIRE, 3-PHASE, MOUNTING OF METER CABINET ON (CUSTOMER OWNED POLE)</td>
</tr>
<tr>
<td>18.14</td>
<td>METER COMPARTMENT IN SWITCH GEAR, (CUSTOMER OWNED FACILITIES)</td>
</tr>
<tr>
<td>19.0</td>
<td>PRIMARY METERING DRAWINGS</td>
</tr>
<tr>
<td>19.1</td>
<td>4 WIRE, 3 PHASE, PRIMARY METERING CUBICLE</td>
</tr>
<tr>
<td>19.2</td>
<td>STANDARD PAD FOR PRIMARY METERING CUBICLE</td>
</tr>
<tr>
<td>19.3</td>
<td>1-PHASE, 12-25KV, OH TO UD, PRIMARY METERING CLUSTER</td>
</tr>
<tr>
<td>19.4</td>
<td>4-WIRE, 3-PHASE, 12-25KV, OH TO UD, PRIMARY METERING CLUSTER</td>
</tr>
<tr>
<td>19.5</td>
<td>4-WIRE, 3-PHASE, OH TO OH, PRIMARY METERING CLUSTER</td>
</tr>
<tr>
<td>19.6</td>
<td>4 WIRE 3 PHASE OH TO OH PRIMARY METERING CLUSTER WITH PKR SWITCH</td>
</tr>
<tr>
<td>19.7</td>
<td>4 WIRE 3 PHASE PRIMARY OH/UG CLUSTER – TURBO TYPE</td>
</tr>
<tr>
<td>19.8</td>
<td>PRIMARY METERING IN CUSTOMER OWNED SWITCHGEAR (A)</td>
</tr>
<tr>
<td>19.9</td>
<td>PRIMARY METERING IN CUSTOMER OWNED SWITCHGEAR (B)</td>
</tr>
<tr>
<td>20.0</td>
<td>REVISION CHANGES TO BLUEBOOK DOCUMENT</td>
</tr>
<tr>
<td>21.0</td>
<td>APPENDIX A: REVISIONS TO THE BLUEBOOK (INCLUDED IN BLUE BOOK 2007)</td>
</tr>
<tr>
<td>22.0</td>
<td>APPENDIX B: REVISION CHANGES TO BLUEBOOK DRAWINGS</td>
</tr>
<tr>
<td>23.0</td>
<td>SOCKETS AND CABINET SIZES</td>
</tr>
<tr>
<td>24.0</td>
<td>METER SOCKET SELECTION GUIDE</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

The Company's main objectives in providing service to our customers are:

1. To provide electric service that is sufficiently available and as continuous and reliable as is economically practical.

2. To provide accurate and prompt billing to each Customer.

3. To provide electric service having excellent safety features, good engineering practices and applicable environmental considerations.

The guidelines set forth in this book have been derived from research, experience and technical considerations and are an important factor in achieving these objectives. To assist the Company in this endeavor, these guidelines should be incorporated into the design and construction of services and wiring systems.

2.0 DEFINITIONS

Abandonment: If equipment is abandoned a mutual agreement shall be reached between the Customer and the Company relinquishing ownership of this equipment to the Customer. The Customer shall agree to accept ownership and responsibility for any abandoned equipment.

Approved: Acceptable to a qualified Georgia Power Company employee.

Company: Georgia Power Company.

Customer: The corporation, municipality, governmental agency, association, partnership or individual using or planning to use electric service supplied by the Company or the architect, engineer or electrical contractor acting as the Customer's agent.

Fifth Terminal Meter Jaw: 120/208 Volt Y services require that a fifth terminal meter jaw shall be installed in the meter socket at either the 6 o'clock or 9 o'clock position. This fifth terminal meter jaw is necessary for grounding the potential coils in the 3 Wire 120 volt 2 Stator meter for accurate registration. The fifth terminal meter jaw is then connected to the neutral at the center of the socket by a jumper wire. Most meter sockets including those that are customer owned have provisions for this terminal to be installed at the 9 o'clock position with a snap-in fifth terminal meter jaw. This terminal is available for Company issued meter sockets from the Company. It must be provided by the Customer for Customer owned meter sockets or multi-position meter centers.

Final Grade Level: Ground level after all construction and landscaping procedures have been completed.

Fire Pump Service: The service dedicated to fire pump equipment.

Grounded Conductor: A system or circuit conductor that is intentionally grounded.

Grounding Conductor (Bond): A conductor used to connect equipment or the grounded circuit of a wiring system to a grounding electrode.
Grounding Conductor, Equipment: The conductor used to connect non-current carrying metal parts of equipment, raceways and other enclosures to the system grounded conductor and/or the grounding electrode conductor at the service equipment.

Grounding Electrode Conductor: The conductor used to connect the grounding electrode to the equipment grounding conductor and/or to the grounded conductor of the circuit at the service equipment.

Isolated: Not readily accessible to persons unless special means for access are used.

Joint Agreement: The understanding of two or more parties having the same consent, vision and commitment for solution of a particular situation or circumstance.

Line Side: The top of any meter sockets used on GPC system.

Load Side: The bottom of any meter sockets used on GPC system.

Listed: Equipment or materials included in a list published by an organization acceptable to the authority having jurisdiction and concerned with product evaluation that maintains periodic inspection of production of listed equipment or material meets appropriate standards or has been tested and found suitable for use in a specified manner.

Metal Anchor: Metal device designed by manufacture to mount equipment to masonry or concrete. The intent is to exclude the use of plastic anchoring devices.

Primary Voltage: A voltage magnitude of more than 600 volts phase to phase or with a phase to ground potential difference.

NEC (National Electrical Code): Future revisions of The National Electrical Code, ANSI/NFPA 70, (Current revision), may change the requirements of the code or the references contained herein.

NESC: National Electrical Safety Code.

Qualified Employee: A Georgia Power Company employee responsible for company safety, regulations, construction, application and operation of the equipment involved.

Readily Accessible: Capable of being reached easily for operation, renewal, or inspections without requiring those to whom ready access is requisite to climb over or remove obstacles or to resort to portable ladders, chairs, etc.

Secondary Voltage: A voltage magnitude of 600 volts or less for a phase to phase potential difference.

Service: The conductors and equipment for delivering energy from the electricity supply system to the wiring system of the premises served.

Service Drop: The overhead service conductors from the last pole or other aerial support to and including the splices, if any, connecting to the service entrance conductors at the building or other structure.
Service Entrance Conductors - Overhead System: The service conductors between the terminals of the service equipment and a point usually outside the building, clear of building walls, where joined by tap or splice to the service drop.

Service Entrance Conductor - Underground System: The service conductors between the terminals of the service equipment and the point of connection to the service lateral.

Service Equipment: The necessary equipment, usually consisting of a circuit breaker or switch and fuses, and their accessories located near the point of entrance of supply conductors to a building or other structure or an otherwise defined area intended to constitute the main control and means of cutoff of the supply.

Service Lateral: The underground service conductors between the street main, including any risers at a pole or other structure from transformers, and the first point of connection to the service entrance conductors in a terminal box, meter socket or other enclosure with adequate space, inside or outside the building wall. Where there is no terminal box, meter socket or other enclosure with adequate space, the point of connection shall be considered the point of entrance of the service conductor into the building.

Service Point: The point at which the delivery of power changes ownership. It can be the first point of transformation for secondary voltage where the service conductors serve a common section of the facility such as switchgear, electrical and meter rooms. A service point may consist of multiple transformers and parallel conductors with the same voltage and type of service. A bank of padmount transformers serving different facilities is considered to be more than one service point.

Special Permission: The written consent of a qualified employee. (See definition of Qualified Employee).

Structurally Solid Enclosures: An enclosure constructed of materials that allow no access or penetration of foreign objects from any direction or intrusion except through an approved entry point. Material types may vary but will always be sound, firm and well constructed, not effected by weathering, water or high heat exposure. Examples are concrete, masonry, and steel.

Sub-Metering: The metering of individual loads within a facility for billing or load control purposes. For billing applications, usually the facility is metered by a master meter and the property owner desires to meter and charge individual tenants for their portion of the electricity consumed. This equipment is customer owned and maintained.

Transformer Location Number: A unique number assigned to each transformer location. Services are assigned to this transformer for trouble tracking purposes. This number may be located on/inside transformer or on the pole.

Vaults: A service point so constructed as to be part of a Network System having a main street buss or single Customer delivery configuration consisting of Under Ground, watertight or network type transformers or duct systems. Vaults are “Structurally Solid Enclosures” constructed on and below grade with rigid and restricted access to all persons, without compromise, except by qualified Company employees or Company contractors.

Weatherproof: So constructed or protected that exposure to the weather will not interfere with successful operation.
3.0 GENERAL INFORMATION

A. Availability and Classification of Service:

1. To assure prompt service, it is necessary for the Customer to obtain from the Company the characteristics (phase, voltage, etc.) and availability of any service desired well in advance of the required service date.

2. Services described in this book are those normally rendered by the Company. A Customer should consult the Company concerning special service requirements and obtain confirmation before construction is begun.

3. The Company is available to advise customers concerning the use of electrical equipment or situations not covered in this book. See page 2 for contact information.

B. Application for Service:

1. The Company maintains local offices strategically located throughout its service area. These offices will furnish information regarding application for service.

C. Temporary Service:

1. Application for temporary service should be made well in advance of the required service date. To insure prompt service, the location of the temporary service should be plainly marked with the lot number and/or street address as shown on the service application.

2. TEMPORARY SERVICE INSTALLATIONS SHALL BE CONSTRUCTED WITH THE SAME CARE AS PERMANENT SERVICE INSTALLATIONS AND SHALL HAVE GROUND CLEARANCES NOT LESS THAN SHOWN IN Section 15.20. Where practical, poles for overhead temporary service should be located so the temporary service drop may be relocated to the permanent service location without splicing the conductors. Temporary service locations served from underground distribution should be located within 5’ of a padmount transformer or other location designated by a qualified employee. Refer to drawings in Section 15.21.

D. Number of Services and Meters:

1. The Company shall connect only one service drop or service lateral to a building or structure for each class of service except as permitted by the National Electrical Code.

2. Only one watt-hour meter shall be installed per Customer per class of service except as explained in item #1 above. IN NO CASE SHALL METER READINGS OF TWO OR MORE WATT-HOUR METERS BE COMBINED FOR BILLING PURPOSES.

E. Extensions:

1. A Customer desiring service rendered by the Company beyond the bounds of its present system should contact the Company well in advance of the required service date.
2. To avoid unnecessary delays, applications for service should be made as far in advance of required service date as practical. Definite instructions for locating the service address, including premise number and street name, will help to assure prompt service.

F. Alterations and Additions:

1. The electric service and metering equipment are designed to serve the Customer’s load as it exists when connected to the Company’s distribution system. For maximum safety and billing accuracy the Customer should notify the Company in advance of any significant load additions or deletions.

G. Use of Service by the Customer:

1. Compatibility between the Company’s distribution system and the Customer’s wiring system is of utmost importance. Because of this the following operating procedures are recommended to the Customer:

 (a) No over current device larger than that permitted by the National Electrical Code should be installed in the Customer’s wiring system. Neither shall the Customer employ any method designed to cause protective devices to be inoperative.

 (b) The Customer’s wiring and equipment should be maintained in the condition required by inspection authorities having jurisdiction. The Customer should use equipment and service only in such manner as not to disturb the Company’s service to other customers.

2. When designing a wiring system, the Customer should balance the load connected across each phase of the system as nearly as practical.

H. Liability for Service Interruption:

1. The Company will, at all times, exert itself toward the goal of supplying as nearly constant service as is reasonably practicable, but the Company does not guarantee the supply of electric energy will be free from temporary interruptions. Temporary interruptions of the Company’s service shall not constitute a breach of the Company’s service obligations, and neither the Company nor the Customer shall be liable to the other for damages resulting from such temporary interruptions. In the event of interruptions of service, the Company will restore the service as soon as reasonably practical. In the event conditions on the Customer’s premises cause an interruption, the Company will allow a reasonable time for those conditions to be corrected, but reserves the right to disconnect the service until the conditions are corrected to preserve the safety and reliability of the Company’s system.

2. In cases where phase reversal or single-phasing conditions might cause damage to electrical equipment, the customer is advised to install appropriate protective systems.

I. Service Quality:

1. The integrity of electric service is of utmost concern to the Company. Normal system operations and unavoidable system disturbance may, however, cause customers to experience problems with certain types of equipment, most notably computers. If the Customer should experience equipment malfunctions caused by system disturbances, the
Company stands ready to advise and assist the Customer in resolving these problems. Please contact a qualified employee.

4.0 CONNECTIONS BETWEEN COMPANY AND CUSTOMER

To preserve the safety and reliability of the Company’s system, it is necessary that all connections between the Company’s service drop or lateral and Customer’s service entrance conductors and all connections at the secondary terminals of the Company’s distribution equipment be made by the Company.

5.0 INSPECTIONS

Purpose: To provide guidelines for inspection requirements for the safe connection of electrical service (from the company's electrical system) to the customer's electrical system.

NOTE: In areas where electrical inspection is provided, the Company is prohibited from making the final connection between the Company’s electric system and the premises' wiring system until approval has been received from the authority having jurisdiction. In all areas the Company reserves the right of final judgment by a qualified employee, when making approval for service.

A. General:

1. The Public Service Commission requires that all wiring and equipment in or upon the premises of the customer to the point of the service connection must have the approval of an inspector from the constituted authority (cities and counties, for example), and the Service Regulations of Georgia Power Company, before the customer can be connected to our system.

 NOTE: So long as the constituted authority has approved the customer's premise wiring, Georgia Power Company cannot be prohibited from connecting that customer's service, even though the constituted authority has not approved the customer's other facilities. For additional information and guidance, contact Corporate Distribution.

2. For customers that may be exempt from the local inspecting authority, such as some federal, state, and local governmental agencies or self-inspecting entities, a letter should be obtained from an individual or entity qualified to make the statement that all wiring has been completed according to the National Electrical Code (NEC) before service is connected.

3. All connections between Georgia Power Company’s service drop or lateral and the customer's service entrance conductors shall be made by Georgia Power Company.

4. Regardless of whether a city or county employs inspectors, Georgia Power Company, through a qualified employee, has the right to make the final determination about connecting the service.
B. Where an inspecting authority exists:

1. In areas where an electrical inspection authority is provided, Georgia Power Company is prohibited from making the final connection to the customer's wiring system until approval has been received from the authority having jurisdiction.

2. If, during the routine process of connecting the service, and installing the meter, an unsafe condition is found to exist such as, but not limited to, missing breaker box covers, service attachment point or pole not adequate in height, service pole is unstable or rotten, etc., then the customer shall be notified of the unsafe condition and service will not be connected until the unsafe condition is corrected.

C. Where no inspecting authority exists:

1. Georgia Power Company employees should not set themselves up as an "electrical inspecting authority" by deliberately opening and/or inspecting customer-owned wiring or equipment.

2. If, during the routine process of connecting a service, there appears to be an unsafe condition, such as, but not limited to, missing breaker box covers, service point of attachment not adequate in height, service pole is unstable, etc., then the customer shall be notified of the unsafe condition and service will not be connected until the unsafe condition is corrected.

3. At the employee's discretion, the employee may suggest to the customer that a qualified electrician inspect or re-inspect the wiring, equipment or the like and correct problem(s). In no case should the employee diagnose the problem for the customer. Once the problem is corrected, the customer can then call to request connection.

 NOTE: When explaining the situation to the customer, the employee shall focus on the unsafe condition and not on what may (or may not) be an NEC violation.

4. Any specification sheets given to a customer for connection guidelines should only contain Georgia Power Company's requirements, and not NEC related information.

6.0 SERVICES AT SECONDARY DISTRIBUTION VOLTAGES

A. Overhead Services:

1. To avoid unnecessary delays, the availability of types of service should be confirmed with the Company before construction is begun.

2. The point of connection between the Company's service drop and the Customer's wiring system should be located at a point convenient to both the Company and the Customer. To comply with the appropriate safety codes, the point of connection must provide clearances not less than those shown in Section 15.1. This point of connection should not be more than 25' above final grade level unless necessary to provide required clearances.

3. When necessary to install a service mast to obtain the clearance required, the mast shall not be less than 2” trade size rigid metal conduit. A service mast exceeding 3’ in height above the roof or last means of support shall be adequately guyed to withstand the strain imposed...
by the service drop. See Section 15.2 for clearance requirements for a service drop attached to a mast. At the point that the service mast conduit passes upward through a roof overhang, at its soffit or through any enclosed fascia area, the service mast conduit shall be one continuous section, with no conduit couplings. All couplings used below the roof overhang or fascia shall be visible in the service mast conduit. **No conduit coupling shall be a part of the service mast conduit at any point above the roofline of the building.**

4. The **Company** will furnish hardware necessary for attaching the service drop to a building. The **Customer** is responsible for installing the hardware in a secure manner.

5. The arrangement and connection of the service drop to service entrance conductors shall comply with the current edition of the National Electric Code unless an exception has been granted by the inspection authority having jurisdiction.

6. Conductors carrying unmetered energy shall not be contained in the same raceway, trough, or conduit with conductors carrying metered energy.

7. Service entrance conductors connected to the **Company’s** service drop shall comply with Article 230, Section D of the National Electric Code, unless the inspection authority having jurisdiction has granted an exception. **Customer’s** service entrance conductors shall not be less than 3’-0” at weatherhead.

8. For safety reasons, the grounded conductor of service entrance conductors shall be plainly marked unless it is white, neutral gray or bare.

9. For proper metering of 4-Wire, 3-Phase, delta service the phase having the highest voltage to ground (high leg) must be in the right hand or "C" phase position in the meter socket. To insure proper connections, the (high leg) must be plainly marked at the weather head. See Section 16.2, 16.3, 16.4, 18.2, 18.3, 18.4 and 18.6.

10. For multi-level residential premises the following options apply:

 1. The preferred method is for Company owned metering equipment to be located at one level for all residential units, installed as described in Section 9.0 of the latest edition of the G.P.C. Electrical Service And Metering Installations Blue Book.

 2. An alternate method (as approved by the local Metering Services Field Supervisor) is for one “master” meter to be installed in a switchgear, current transformer cabinet or at an underground pad-mounted transformer as described in Section 6.0 and/or Section 9.0.

 3. An alternate method (as approved by the local Metering Services Field Supervisor) is for multi-level multi unit metering where the following conditions apply:

 (a) An up-front contribution in aid for remotely read metering installation expenses in made to off set GPC additional costs.

 (b) A Master Meter (to be used as a NON BILLING MEMO METER for audits and security verifications) is installed as described in option # 2 in this document.

 (c) A separate fire pump meter is installed.
(d) All meter equipment installations and locations satisfy the requirements as described in Section 6.0 and/or Section 9.0 of the G.P.C. Electrical Service And Metering Installations Blue Book.

(e) A written understanding of expectations and agreements is provided to the local Metering Services Field Supervisor before construction begins.

11. In cases where service voltage is 277/480V or higher, the **Company** will meter at the service voltage only (first transformation point).

NOTE: Customer has the option to sub-meter beyond any step-down transformer(s) with **Customer owned** and maintained sub-metering equipment.

12. **Sub-Metering:** The metering of individual loads within a facility for billing or load control purposes. For billing applications, usually the facility is metered by a master meter and the property owner desires to meter and charge individual tenants for their portion of the electricity consumed. This equipment is customer owned and maintained.

B. Underground Services:

1. The availability of underground service should be confirmed with the **Company** before construction is begun.

2. The point of connection between the **Company’s service laterals** and the **Customer’s** service entrance conductors shall be determined by a **qualified employee** after consultation with the **Customer**.

3. Due to space limitations, the number of runs of customer owned underground service cables in a 3-Phase padmount transformer shall be agreed upon between the customer’s authorized representative and a **qualified employee** prior to installation.

4. Padmount transformer locations will be approved by a **qualified employee**. Padmount transformers will be located not less than 10’ from a building or 14’ from a doorway. Refer to Section 6.1.

5. Where circumstances require greater capacity than can be supplied by one transformer, the **Company** should be consulted well in advance so special arrangements can be made.

6. Metering equipment shall normally be located outside. Inside locations must be approved by **special permission** from a **qualified employee**.

7. **Company** owned **service laterals** may be terminated in factory assembled metering centers owned by the **Customer**. Metering centers shall be equipped with connectors satisfactory to the **Company** for termination. Adequate wireway space shall be provided for these laterals. See Section 9, Item #D and the installation drawings in Sections 15.16, 15.17, 15.25, and 15.27.

8. Only one meter installation shall be allowed inside a padmount transformer. If metering inside a padmount transformer, the transformer can only serve one customer. Meter sockets shall not be mounted in or on padmount transformers. Instrument transformers shall not be used on single phase padmount transformer. For 3-Phase services over 225 amps see
transocket installation in Section 18.1. Instrument transformers shall not be placed in a padmount transformer less than 150 kva for 208Y/120 or less than 300 kva for 480Y/277.

9. For multi-level residential premises the following options apply:

1. The preferred method is for Company owned metering equipment to be located at one level for all residential units, installed as described in Section 9.0 of the latest edition of the G.P.C. Electrical Service And Metering Installations Blue Book.

2. An alternate method (as approved by the local Metering Services Field Supervisor) is for one “master” meter to be installed in a switchgear, current transformer cabinet or at an underground pad-mounted transformer as described in Section 6.0 and/or Section 9.0.

3. An alternate method (as approved by the local Metering Services Field Supervisor) is for multi-level multi unit metering where the following conditions apply:

 (a) An up-front contribution in aid for remotely read metering installation expenses in made to off set GPC additional costs.

 (b) A Master Meter (to be used as a NON BILLING MEMO METER for audits and security verifications) is installed as described in option # 2 in this document.

 (c) A separate fire pump meter is installed.

 (d) All meter equipment installations and locations satisfy the requirements as described in Section 6.0 and/or Section 9.0 of the G.P.C. Electrical Service And Metering Installations Blue Book.

 (e) A written understanding of expectations and agreements is provided to the local Metering Services Field Supervisor before construction begins.

10. In cases where service voltage is 277/480V or higher, the Company will meter at the service voltage only (first transformation point).

 NOTE: Customer has the option to sub-meter beyond any step-down transformer(s) with Customer owned and maintained sub-metering equipment.

11. Sub-Metering- The metering of individual loads within a facility for billing or load control purposes. For billing applications, usually the facility is metered by a master meter and the property owner desires to meter and charge individual tenants for their portion of the electricity consumed. This equipment is customer owned and maintained.
6.1 LOCATION OF PADMOUNT TRANSFORMERS FROM BUILDINGS

NOTES:
1. The standard pad location shall be 10 feet from the building wall.
2. Edge of pad shall be no less than 14 feet from a doorway.
3. Edge of pad shall be no less than 10 feet from windows or other openings.
4. If the building has an overhang and is 3 or less floors in height above the ground, the 10 foot clearance is measured from a point below the edge of the overhang.
5. If the building has an overhang and is 4 or more floors in height above the ground, the 10 foot clearance may be measured from the building wall.
6. Fire escapes, outside stairs and walkways attached to or between buildings shall be considered as part of the building.
7. Walkways from the building to a place of safety (normally the parking area) shall have 10 feet of clearance to the pad.
8. Always maintain 10 feet of clearance in front of the transformer and on the side with the bayonet fuse compartment.

Exception:
Transformer pads may be located closer, but not less than 3 feet, from a building provided written approval is obtained from the State Fire Marshal. If permission is required to reduce the clearance, the sides with the doors of the transformer and the bayonet fuse compartment shall not be on the building side of the pad.
7.0 Transformer Vaults

1. Safety and OSHA requirements dictate certain rules and regulations compatible with reasonable access to metering equipment in “below grade” vaults. It is strictly prohibited to install, maintain or operate any metering equipment within the restricted area, room or confined space of a “below grade” vault.

2. Special permission may be granted for metering installations in separate and isolated rooms, compartments or “outside yards” adjacent to a vault with the following specifications.

 (a) All partitions between a “below grade” vault and a metering facility shall be constructed of concrete.

 (b) Partitions between an “on grade” vault and the metering facility shall be constructed of a permanent material capable of preventing extended reach from any area inside the vault.

 (c) The compartment shall be not less than 8’ square having no wall less than 8’ in length and 8’ in height.

 (d) Floor or street level entry through a GPC controlled, lockable doorway must be provided by access outside the restricted area of the vault.

 (e) Access by ladder or steep steps is not acceptable access.

 (f) Cross ventilation and a lighted circuit supplying light every 8’ of wall space must be provided in the metering compartment along with a center floor drain or equivalent.

 (g) A metering buss shall be constructed so as to direct all load through one set of current transformers if practical and as few sets of current transformers as possible.

 (h) When voltage transformers are used for metering, one set of voltage transformers shall be installed for each set of current transformers. All metering transformers, equipment cabinets, and sockets shall be furnished by the Company and mounted by the Customer as required by any other typical request for service.

 (i) Qualified metering personnel of the Company shall determine the method of metering dependent upon all consideration unique to the Customer.

 (j) It is the responsibility of the Customer to establish communications for vault Metering permission as early in the planning as necessary to allow for good Meter Engineering practices.

8.0 Meter Tampering

1. It is unlawful for any person, intentionally and without authority, to damage or destroy any meter or metering equipment, to prevent any meter from properly registering the service supplied by the Company or to divert or otherwise use without authority any service supplied by the Company. Violators are subject to prosecution under state and local laws.
9.0 METERING INSTALLATIONS AT SECONDARY DISTRIBUTION VOLTAGES

A. General:

1. The Company shall furnish, install, test and maintain adequate metering equipment to accurately measure the Customer’s use of electric energy.

2. Metering equipment furnished by the Company to be installed by the Customer (meter sockets, meter cabinets, etc.) will be supplied in good operating condition. This equipment is the property of the Company and shall be used for metering the Company’s customers. Abandoned equipment shall become the responsibility of the Customer.

 NOTICE: ALL GPC ISSUED METERING EQUIPMENT MUST BE USED TO METER GPC CUSTOMER LOCATIONS ONLY. IF THE ADDRESS LISTED IS NOT A GPC CUSTOMER OR IF THE EQUIPMENT IS NOT USED AT THE ADDRESS LISTED THE CONTRACTOR/PERSON RECEIVING EQUIPMENT WILL BE RESPONSIBLE FOR RETURNING THE UNUSED EQUIPMENT. IF MISUSE OF GPC EQUIPMENT IS DETERMINED THE ELECTRICAL CONTRACTOR RECEIVING EQUIPMENT WILL BE RESPONSIBLE FOR ALL ASSOCIATED GPC LABOR AND MATERIAL COST.

3. Connections to all meters, instrument transformers and other equipment affecting the accuracy of these devices shall be made by a qualified employee or approved agent.

4. When the service entrance conductors are connected to the Company’s distribution system, the qualified employee making the connection shall be responsible for permanently marking the Transformer Location Number, (TLN#), inside the meter enclosure. The qualified employee installing the meter will record the TLN# on the CSS install order for the customer linking database.

5. Company owned meter sockets or metering cabinets shall not be used as junction boxes for the connection of branch circuits, feeder conductors or the connection of subsets of service conductors supplying separate service locations for the same or different premises. This does not apply if the equipment has been abandoned by the Company.

6. Where aluminum conductors are terminated in meter sockets or other Company owned equipment, inhibitor of the non-grit type shall be used in each conductor connector and around the circumference of each conductor including the grounded conductor (neutral).

B. Mounting and Labeling of Meter Sockets and Metering Cabinets:

1. Metering equipment furnished by the Company shall be surface mounted.

2. To insure safety, accuracy, and reliability of service it is necessary that meter sockets and metering cabinets be securely installed in a level and plumb position.

3. Meter sockets, metering cabinets and conduit straps shall be installed with:

 (a). Metal anchors - brick or solid concrete.
(b). Toggle bolts - other masonry siding.

(c). Wood screws - solid wood.

(d). All mounting hardware shall be ¼” (minimum) stainless steel.

(e). Minimum of (4) fasteners shall be used to install any socket or cabinet unless specifically stated otherwise.

(f). Conduit Straps- Conduit must be securely fastened to the wall within 12” of the meter socket and 6” of final grade level. Conduit straps shall be fastened to walls with the same type fasteners as meter sockets. Refer to illustration in Section 15.3.

4. Where the exterior wall is other than brick or concrete blocks a frame shall be installed behind the exterior wall to provide a solid mounting surface for metering equipment.

5. To avoid delays in providing service to multi-unit buildings (apartments, condominiums, or commercial) both the unit and meter socket position must be labeled on both the inside and outside (See Sections 15.10, 15.11, 15.16, 15.17, 15.27, 18.4, 18.5, and 18.6) surfaces with permanent letters and/or numbers in enamel paint at least 1” in height of contrasting color.

C. Metering Equipment Locations:

1. The location for metering equipment is outdoors. For indoor installations, special permission must be obtained from a qualified employee.

2. Meters and associated metering equipment shall not be located in the restricted area of any prison, jail, penitentiary, detention center or any facility which restricts reasonable access. Primary metering is the preferred method for these facilities.

3. Metering equipment for secondary voltages shall not be located on utility owned poles. For pole type installation, the equipment shall be installed on Customer owned pole or a free standing structure adjacent to the utility pole. For example, see Sections 15.26, 16.6, and 18.12.

4. Metering equipment shall not be located in meter rooms or other locations, sheds, attics, bedrooms, bathrooms, toilet rooms, kitchens, stairways, carports, patios, furnace rooms or basements where the only entrance is through a trap door or in any location where there is less than 7' of headroom.

5. Metering equipment shall be located where it is readily accessible to Company employees. Refer to readily accessible definition in Section 2. If metering equipment is to be located behind a locked door, the lock shall be keyed for a Georgia Power Meter Room key.

6. Meter sockets, multi position meter centers and other metering equipment shall be located so the center will be between 2’-6” and 5’-6” above final grade level. These dimensions also apply with respect to the floor where special permission is obtained to locate the metering equipment indoors.

7. Safety dictates metering equipment shall be located so Company personnel are provided level, unobstructed working space. This working space should extend a minimum distance
of 3’ in front and 18” to either side of the equipment, and a height of 7’ from final grade level. (Refer to Section 15.1)

8. A clearance of at least 6’ shall be provided from machinery or devices having moving parts that are not physically isolated.

9. Where special permission is obtained to locate metering equipment indoors, adequate lighting shall be provided to allow safe installation, maintenance and testing. One light per 8’ of wall space or portion thereof.

10. Metering equipment shall not be installed in a meter room, closet or any confined space with gas meters or appliances. Outside metering equipment shall not be installed within 3’ of gas meters or gas appliances.

11. If necessary to locate metering equipment adjacent to a driveway, walkway, parking lot or any location that will subject the meter to damage, special permission must be obtained from a qualified employee who will have the option to require the Customer to furnish and install protective barriers. If necessary to place a meter above a walkway, the bottom of the meter socket shall be 6’-6” above the walkway.

12. Metering accuracy is of utmost importance to the Company and customers. Therefore, any location a qualified employee determines may cause erroneous registration shall not be allowed.

13. Typical metering installations are illustrated by drawings in this book. If questions arise, consult a qualified employee.

D. Metering Installations Where the Rating of Service is 225 Amperes or Less for Each Meter Position:

1. Only one conductor shall be permitted in each connector of Company owned meter sockets.

2. When more than one metering position is needed, as in apartments, two-position meter sockets are available from the Company. These units must be installed to the following specifications:

 (a) Maximum height above final grade level 5’-6”; minimum height 2’-6”.

 (b) If units are installed one above the other, a minimum 2” space shall be maintained between any two units.

 (c) Two single position meter sockets shall be used (rather than one two-position) whenever either of the following conditions exist:

 1. A qualified employee determines the combined two position load exceeds 200 amperes on an underground service.

 2. Any overhead service entrance conductors are larger than 350 MCM aluminum or copper.
(d) Conduit for underground service laterals should be minimum 2-½” trade size rigid metal or Schedule 40 PVC or equivalent.

(e) Conduit for underground service laterals shall extend vertically downward 2’ below final grade level and conduit ends shall be equipped with a bushing to protect the conductors. The Customer shall extend the conduit below or beyond the concrete footing to provide a minimum 6” clearance between the concrete and the conduit end. Refer to Section 15.3.

(f) Conduit must be securely fastened to the wall within 12” of the meter socket and 6” of final grade level. Conduit straps shall be fastened to walls with the same type fasteners as meter sockets. Refer to Section 9 and illustration in Section 15.3.

(g) Inhibitor of the non-grit type must be applied to conductors when aluminum conductors are used.

(h) Safety dictates all meter positions shall be properly covered before the unit is energized.

3. Where service is 480Y/277 volts a load side disconnect shall be installed immediately adjacent to meter socket. The disconnect must be rated not less than the load to be carried and must have an interrupting rating at system voltage sufficient for the current that must be interrupted. The disconnect shall accept a Company lock in the off position.

E. Customer Furnished Sockets, (1-Phase & 3-Phase):

1. If a Customer chooses to use meter sockets not furnished by the Company, he shall notify the Company well in advance of required service date and shall comply with the following specifications:

 (a) Customer purchased equipment shall be UL listed. The label, symbol or other identifying mark used by the testing laboratory shall be affixed to the unit. As of 5/1/07, if single phase, unit must meet minimum spacing construction requirements as shown in drawings 15.8.1 and 15.8.2.

 (b) Each meter socket position shall be rated not less than the ampacity of the service or feeder conductors connected to the load side of the socket where multi-position metering assemblies are used.

 (c) Line side connectors of meter socket assemblies to be connected to Company service laterals shall be of a type satisfactory to the Company. The main bus of assemblies connected shall be rated not less than 200 amperes multiplied by the number of meter positions but not more than 1000 amperes.

 (d) Any exposed buss work or connections must have a protective barrier.

 (e) Line side connectors shall be designed and listed (UL486B) for a minimum of 4/∅ connectors. Recommended torque values for all connectors shall be clearly marked in the connector compartment. All conductor strands shall be contained beneath the connector pressure device (set screw, pad, etc.)

 (f) The following requirements shall apply to customer owned sockets.
1. All meter spade jaws on residential customer owned sockets shall be spring reinforced and rated at no less than 200 amps.

2. All 200 amp 4-Wire 3-phase self-contained and 320 amp 3-Wire 1-phase self-contained meter sockets shall be equipped with a by-pass handle. *4w 3ph Class 320 self contained services are not allowed by the Company.*

3. All sockets used on commercial applications shall have a by-pass handle.

(g) Ring type sockets must be equipped with Company approved screw-type sealing rings.

(h) Connectors for more than one conductor and connectors used to connect aluminum conductors must be approved for the purpose. Inhibitor of the non-grit type must be used on all aluminum conductors. The Company will not accept more than one conductor under one pressure device (set screw, pad, etc.)

(i) Conductors carrying unmetered energy shall not be contained in the same compartment, conduit, or raceway with conductors carrying metered energy.

(j) Meter sockets installed outdoors must be weatherproof (NEMA Type 3R). A unit is considered to be outdoors unless it is installed within the confines of the main structure of the building and totally protected from the weather. Units installed in metering rooms attached to a building will be considered outside unless the metering room is connected to the main structure of the building and has the same roofing as the building and roof flashing is installed.

(k) Multi-position, Customer owned, meter center shall be constructed so the dedicated line side wiring compartment is separate from breakers, disconnects, and compartments housing service equipment or meter sockets and is accessible without having to remove any meter(s). Each meter position's cover shall be removable without having to remove any other cover(s). Each meter position shall have a lockable load side disconnect for the Company’s use.

1. All multi-position meter sockets and meter centers used on commercial applications shall have a by-pass handle.

2. If the Customer furnishes multi-position meter centers or single position meter sockets and the supply source is 208Y/120 3-Wire 1-Phase service the Customer shall furnish and install a grounded fifth terminal mounted in the (9 o’clock position) in each socket.

3. If the Customer combines the load in a multi-position meter center to be metered by current transformers as one load, all of the conductors shall originate from a common point either a buss connection or one disconnect, before they pass through the current transformers. Individual disconnects shall not be allowed before the current transformers.

(l) The Customer shall be responsible for all maintenance of meter sockets not furnished by the Company. The Company shall affix a disclaimer statement inside and outside of each Customer owned meter socket which reads as follows:
NOTICE: This meter mounting device was not furnished or approved by Georgia Power Company and is not the property of Georgia Power Company. Georgia Power Company shall not be liable for any damage or injury caused by failure of this device or for repair or replacement of this device or any parts contained therein. The sole purpose of this disclaimer statement is to inform the Customer and electrical contractor that Georgia Power Company does not own this device and does not assume any liability for damages that might be caused by the device or any responsibility for maintenance for the unit. It does not in any way imply that the meter socket assembly is inferior or unsafe.

F. Metering Installations Where The Service Rating Is Greater Than 225 Amperes

1. On Single Phase service: Where the service ampacity rating is greater than 225 amperes, but not over 400 amperes, a self contained class 320 ampere meter socket furnished by the Company shall be used on 1-Phase 120/240 or 120/208 volt service. When the service ampacity rating is greater than 400 amperes, but not exceeding 600 amperes, the preferred method of metering is a transocket. When the service ampacity is greater than 600 amperes, current transformers shall be used.

2. On 3 Phase service: When service ampacity is greater than 225 amperes and less than 600 amperes, the preferred method of metering is a transocket. The 3-Phase transocket is provided with a 600 MCM dual rated two port non-rotational connector on line and load side of the transocket. When the wire size to be used is larger than the capacity of the connectors provided by the Company, a current transformer installation shall be used rather than the transocket. When the service ampacity is greater than 600 amperes, current transformers shall be used. 4w 3ph Class 320 amp self contained services are not allowed by the Company.

3. Only one meter installation shall be allowed inside a padmount transformer. If metering inside a padmount transformer, all load must be for one customer and metered with one set of current transformers.

4. Instrument transformers may be issued to the Customer for installation or installed by Company employees. A transformer rated meter socket shall be furnished by the Company and installed by the Customer.

5. The Customer shall furnish and install a trade size 1-1/2” schedule 40 PVC, threaded rigid or intermediate metal conduit into the available knockouts of the meter socket test switch enclosure. No conduit shall enter through the top or back of the meter enclosure. All meter control cable access points shall remain readily accessible.

(a) Overhead: Refer to Sections 18.7, 18.8, 18.11, and 18.12.

(b) Underground: Refer to Sections 18.5 and 18.9.

6. The maximum allowable distance from the meter socket to the instrument transformers is 50’. A maximum of two 90 degree bends or sweeps are allowed in each run of conduit. All conduit ends shall be reamed to protect the meter control cable. All metal conduit ends shall be threaded. Each end of metal conduit runs shall be equipped with a bonding bushing.
7. When parallel service entrance conductors pass through current transformers, it is the Customer’s responsibility to have the same phase only through each transformer.

8. Due to special considerations and requirements for metering where instrument transformers are located in the Customer’s switchgear, each installation must be coordinated with the GPC Metering Services Engineering Section.

9. Where instrument transformers are to be located in the Customer’s switchgear, they shall be installed by the switchgear manufacturer at the Customer’s expense. Such instrument transformers shall be installed AHEAD OF ALL LOAD and in a separate compartment of the switchgear for each service. Each compartment shall be equipped with a hinged, sealable door and shall be located such that metering personnel will have clear and unobstructed access to the instrument transformers. The Customer is responsible for the shipping instructions along with a one-line diagram showing the location of the instrument transformers within the switchgear shall be sent to the GPC Metering Services Engineering Section. See Section 18.10.

10. Where multiple customers can be served by a common distribution point, all customers metered with instrument transformers shall be required to provide a load side disconnecting means that is readily accessible to the Company. The disconnecting means shall accept a Company lock. The purpose of the disconnecting means is to enable the Company to disconnect and reconnect service to these customers without interruption of service to other customers served from the same service source. Refer to Section 18.4 and 18.5 for some examples.

G. Metering Installations In Mobile Home Parks

1. Overhead Installations:

(a) The metering pole must be of sufficient height to provide service drop clearances as shown in Sections 15.22 and 15.23.

(b) The Company’s preferred method for multi-position metering is to furnish the meter sockets. If a Customer purchases meter socket assemblies, the Customer shall be solely responsible for all maintenance.

(c) All meter sockets shall be mounted in a manner that allows meters to be inserted and withdrawn without causing movement of the unit. Mounting brackets, furnished by the Company, shall be used to mount Company owned meter sockets on poles.

(d) The mobile home feeder assembly shall terminate at the mobile home service equipment located adjacent to the mobile home. The feeder assembly shall not terminate in the meter socket.

(e) The grounded conductor (neutral) and grounding conductor shall be bonded together at the service equipment according to the National Electrical Code.

(f) For a diagram of a typical overhead installation see Sections 15.22 and 15.23.
2. Underground Installations:

(a) Mobile homes served by underground distribution must provide meter pedestals for the connection of service laterals and watt-hour meters. Refer to Section 15.27.

(b) A separate pedestal shall serve each mobile home.

(c) **Meter pedestals must be manufactured by an approved manufacturer.** Meter pedestals must be approved by the Metering Services Department before the meter pedestals are installed. The Company does not assume ownership of meter pedestals and is not responsible for maintenance.

(d) Grounding should be in compliance with the National Electric Code and applicable state or local codes.

(e) Service equipment and metering socket may be installed on a (manufactured) home, provided it is installed to the requirements of NEC. The meter installation shall meet all the requirements of Section 9 and Section 15.25 of this book.

H. Town Home Meter Installation, (Two options are allowed):

1. **Gang Metering and Customer Owned Meter Centers:** Ganged meter sockets and customer owned meter centers shall be mounted on the side of the building, on a pedestal just off the building, or in a kiosk. Customer conduit and conductors (either feeder conductors or service-entrance conductors, underground system) to each townhouse panelboard shall be installed according the National Electrical Code (NEC). Developer will file a private easement with the county for the customer owned conduit and service cable and conductors before construction will begin where applicable. This easement shall also include permission to install any customer owned service equipment or any associated gang metering equipment, especially if this electrical equipment is mounted directly on the building wall. If not mounted on the building, the metering equipment shall be mounted on a durable structure consisting of 6” galvanized channel iron or masonry substance of similar strength located in a common space of the association.

2. **Service in the Front:** Individual meter sockets shall be mounted on the front of each of the dwellings for service. Any installation must be approved before the project begins by a local qualified employee. In all installations unrestricted access to metering equipment and service conductors is **required** at all times.

I. Guidelines for 480Y/277 volt installations.

1. Where service is 480Y/277 volts, metering shall be to the following specifications:

 (a) Services over 225 amperes shall be metered with instrument transformers.

 (b) Services 226 amps through 600 amps shall be metered with a transsocket when possible.

 (c) Services 225 amperes or less shall have a load side disconnect immediately adjacent to meter socket. The disconnect must be rated not less than the load to be carried and

must have an interrupting rating at system voltage sufficient for the current that must be interrupted. The disconnect shall accept a Company lock in the off position.

10.0 **RESIDENTIAL WIRING PLAN**

GEORGIA POWER COMPANY RESPONSIBILITIES RELATING TO THE WIRING PLAN AGREEMENT ARE OUTLINED BELOW.

A. Upgrades

1. Upgrades are not included in The Residential Wiring Plan Agreement.

B. Maintenance

The Company will repair any Company owned service entrance facilities that are damaged (except for deliberate damage by the Customer). Any changes to the service entrance facilities required by the local electrical inspector or authority having jurisdiction due to NEC changes shall not be covered under the wiring plan, as understood by GPC Distribution Bulletin 3-1.

(a) Repairs may be performed by a licensed electrical contractor chosen by Georgia Power Company. Charge repairs to following account number:

<table>
<thead>
<tr>
<th>CONTRACTORS</th>
<th>GPC LABOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region RCN</td>
<td>Region RCN</td>
</tr>
<tr>
<td>Activity Code</td>
<td>DWIREP</td>
</tr>
</tbody>
</table>

(b) It is recommended that each region establish partnership agreements with local contractors to provide this service.

1. Equipment covered by the Wiring Plan Agreement maintained by Georgia Power Company:

 (a) Service Entrance Cable or conduit and conductors up to the first connection point.

 (b) Meter trough or socket.

 (c) Enclosure for distribution panel or cabinet.

 (d) Weatherhead.

2. Equipment owned and maintained by the property owner:

 (a) Main disconnect.

 (b) Circuit breakers.

 (c) Fuses.

 (d) Fuse pull-out blocks.
(e) Buss bars.

C. Relocation

1. If a Company owned service entrance facility is relocated at the Customer’s request, the Customer shall pay the cost.

2. If a Company owned service entrance facility is relocated at the Company’s convenience, the Company shall pay the cost.

D. Retirement

1. Retire and remove from plan Company owned service entrance facilities under the following conditions:

 (a) The residence is destroyed or damaged to the point that it is uninhabitable.

 (b) The residence is converted to commercial use.

 (c) All original conditions as outlined in the Wiring Plan Agreement are not in place or maintained.

 (d) The residence has been abandoned.

2. Retirement of a service entrance facility requires the following:

 (a) Remove the label identifying the service as the property of Georgia Power Company from the service panel.

 (b) Update the Customer Master service entrance to indicate the retirement of the Wiring Plan Agreement.

 (c) Complete a work memorandum (form 2675A) as for the reason for retirement. Forward the memorandum and the local office copy of the agreement (form 3003-Rev) to the Company’s general accounting department.

11.0 Metering Installations at Primary Distribution Voltages

A. Metering Service statement of policy for metering service points more than 600 volts:

1. Service at more than 600 volts, nominal, will be measured using practical, sound and accepted metering practices as approved by Metering Services Management using one of the following methods:

 (a) A standard substation feeder.

 (b) A standard over-head primary voltage metering cluster.

 (c) A standard primary voltage underground metering cubicle.
(d) Approved customer switchgear with drawings and designs for the instrument transformer compartment.

(e) A low-side primary voltage meter installation immediately adjacent to a customer owned transformer, where the transformer loss compensation can be correctly applied to the revenue meter registers, and the high-side voltage of the customer transformer is the service point and is a voltage greater than or equal to 46 KV, upon review and approval by GPC Metering Services.

B. No service voltage more than 600 volts will be measured inside a Georgia Power Co. owned transformer enclosure or any part thereof for the purpose of revenue metering.

C. No instrument transformers shall be installed in a customer owned transformer for the purpose of revenue metering of any service voltage.

D. No meter cabinet, sockets or compartments shall be installed onto a customer owned transformer for the purpose of revenue metering of any service voltage.

E. Service at more than 600 volts, nominal, is subject to special negotiations between the Customer and Company since the metering and service installations for such service require special engineering consideration. It is necessary to consult the Company well in advance of the time such service will be required so the Customer’s and Company’s design and construction work can be properly coordinated.

F. Because special requirements are involved and added time must be devoted to these installations, the Metering Services Section must have a "Need for Primary Metering Equipment" order at least six weeks prior to the date the equipment will be required.

G. A detailed print of the installation to be metered shall accompany the "Need for Primary Metering Equipment" order and shall be sent to the region meter supervisor.

H. For examples of Primary Meter Installations, refer to section 19.0 Primary Metering Drawings.

12.0 BONDING & GROUNDING OF METER EQUIPMENT

To assure the practical safeguarding of persons and property, the Customer shall install and ground a wiring system in accordance with the National Electrical Code and local codes before requesting the Company to energize the service. Failure to comply with the appropriate codes may result in personal injury or damage to property.

NOTE: Georgia Power Company will not terminate service laterals directly to customer owned breaker or disconnect. Contractor shall provide dedicated line side terminating lugs with N.E.M.A. spaced studs. (Refer to section 15.18).

A. Bonding Supply-Side Metering Equipment:

1. General: Non-current carrying metal parts of meter sockets, instrument transformer cabinets and transockets shall be bonded to the service grounded (neutral) conductor in a manner that establishes an effective ground-fault current path. In all cases where the metering equipment is on the supply-side of the service disconnect, the metal enclosure shall be bonded to the grounded (neutral) conductor within the enclosure. No additional
equipment grounding conductors (bond wires) or bonding jumpers are required to effectively bond the metal meter enclosure to adjacent service entrance equipment.

2. **Self-Contained Sockets:** In all three-phase and single-phase self-contained Company meter sockets, the neutral connector is bonded to the metal enclosure by design. No additional equipment grounding conductors (bond wires) or bonding jumpers are required nor shall any be allowed to attach to or pass through supply-side self-contained meter sockets.

3. **Transockets:** In all Company transockets, the neutral bus is bonded to the metal enclosure by a bonding strap installed at the factory. No additional equipment grounding conductors (bond wires) or bonding jumpers are required nor shall any be allowed to attach to or pass through supply-side transockets.

4. **Current Transformer Cabinets:** Company personnel will bond all Current Transformer cabinets on the supply-side of the service disconnect by attaching a bonding jumper to the grounded (neutral) conductor and to the grounding connector in the bottom left corner of the cabinet. No additional equipment grounding conductors (bond wires) or bonding jumpers are required nor shall any be allowed to attach to or pass through supply-side Current Transformer cabinets.

5. **Transformer-Rated Sockets:** All transformer-rated meter sockets and metallic conduits for meter control cable shall be bonded to the grounded (neutral) conductor by Company personnel.

B. Bonding Load-Side Metering Equipment

1. **General:** Non-current carrying metal parts of meter sockets, instrument transformer cabinets and transockets shall be bonded to the service grounded (neutral) conductor in a manner that establishes an effective ground-fault current path. Where meter equipment is on the load-side of a service disconnect that does not have equipment ground-fault protection and where the meter equipment is adjacent to the service disconnect (within 30 feet), the metal meter enclosure shall be bonded to the grounded (neutral) conductor within the enclosure. No additional equipment grounding conductors (bond wires) or bonding jumpers are required to effectively bond load-side meter enclosures where there is no equipment ground-fault protection and where the meter enclosure is adjacent to the service disconnect (within 30 feet). Where load-side metering equipment is on the load-side of equipment ground-fault protection or where load-side metering equipment is not adjacent to the service disconnect (not within 30 feet), it is the responsibility of the Customer to coordinate a joint agreement between the AHJ (Authority Having Jurisdiction) and the Company for the proper isolation of the equipment grounding conductor and the service grounded (neutral) conductor within the meter enclosure.

2. **Self-Contained Sockets:** In all three-phase and single-phase self-contained Company meter sockets, the neutral connector is bonded to the metal enclosure by design. A single-phase 200 amp self-contained socket (with bypass handle) is available with a removable bonding strap. A kit is also available from the Company for isolating the neutral conductor from the metal enclosure on four-wire three-phase self-contained 200 amp meter sockets. This will allow these sockets to be bonded by the Customer’s equipment grounding conductor (bond wire) when the socket is on the load-side of equipment ground-fault protection or when the socket is on the load-side of a service disconnect and not adjacent to
the disconnect (not within 30 feet). To prevent parallel neutral paths (objectionable current), a meter socket shall not be bonded internally to the grounded (neutral) conductor and also to the Customer’s equipment grounding conductor (bond wire).

3. **Transockets:** In all Company transockets, the neutral bus is bonded to the metal enclosure by a bonding strap installed at the factory. This bonding strap is designed to be removable to allow the transocket enclosure to be bonded by the Customer’s equipment grounding conductor (bond wire) when the transocket is on the load-side of equipment ground-fault protection or when the transocket is on the load-side of a service disconnect and not adjacent to the disconnect (not within 30 feet). To prevent parallel neutral paths (objectionable current), a transocket shall not be bonded internally to the grounded (neutral) conductor and also to the Customer’s equipment grounding conductor (bond wire).

4. **Current Transformer Cabinets:** Where Current Transformer cabinets are located on the load-side of a service disconnect that does not have equipment ground-fault protection and where the cabinet is adjacent to the service disconnect (within 30 feet), Company personnel will bond the cabinet by attaching a bonding jumper to the grounded (neutral) conductor and to the grounding connector in the bottom left corner of the cabinet. Where a load-side Current Transformer cabinet is on the load-side of equipment ground-fault protection or where the load-side cabinet is not adjacent to the service disconnect (not within 30 feet), the Current Transformer cabinet shall be bonded by the Customer’s equipment grounding conductor. To prevent parallel neutral paths (objectionable current), a Current Transformer cabinet shall not be bonded internally to the grounded (neutral) conductor and also to the Customer’s equipment grounding conductor (bond wire).

5. **Transformer-Rated Sockets:** All transformer-rated meter sockets and metallic conduits for meter control cable shall be bonded to the grounded (neutral) conductor by Company personnel.

C. **Grounding of Meter Equipment**

1. **General:** To facilitate meeting NEC grounding requirements, the Company will allow a single grounding electrode conductor to be terminated in a self-contained meter socket or a transocket where a factory installed grounding connector is attached to the neutral bus. The grounding electrode conductor shall be routed straight to the grounding electrode without passing through any other enclosure. The meter enclosure shall not be used as a junction point for bonding together different components of the Customer’s grounding electrode system.

2. **Self-Contained Meter Sockets:** A grounding connector is attached to the neutral bus in Company self-contained three-phase and single-phase meter sockets. A single grounding electrode conductor may be attached in this connector to meet NEC grounding requirements. This connector shall not be used for bonding (equipment grounding conductors). Additional grounding connectors shall not be attached to Company sockets.

3. **Transockets:** A grounding connector is attached to the neutral bus in Company transockets. A single grounding electrode conductor may be attached in this connector to meet NEC grounding requirements. This connector shall not be used for bonding (equipment grounding conductors). Additional grounding connectors shall not be attached to Company transockets.
4. **Current Transformer Cabinets:** Current Transformer cabinets shall not be used as the point of connection for system grounding. The cabinets are not equipped with a grounding connector that is permanently attached to the grounded (neutral) conductor since this conductor passes straight through the cabinet. The connector in the bottom left corner of the cabinet is for bonding purposes only. No additional connectors shall be attached to Current Transformer cabinets for grounding purposes.

D. **External Ground Wires Attached to Meter Equipment**

1. **Company** meter equipment shall not be used as a point of grounding by the **Customer** or other utilities. Ground wires for cable TV, antennas, phone equipment, etc. shall not connect to meter sockets, meter cabinets, Current Transformer cabinets or metal conduits housing meter control cable.

2. Any ground wire as described in paragraph # 1 above that interferes with **Company** personnel accessing the meter or that in any way creates a hazard for **Company** personnel will be subject to removal by **Company** personnel.

12.1 **SERVICE EQUIPMENT WITH HIGH IMPEDANCE GROUNDING SYSTEMS**

1. In meter installations of high resistance grounding applications please contact the local meter supervision for approved methods.

13.0 **MOTORS**

1. Single Phase, 120-volt motors having a locked-rotor current less than 40 amperes and Single Phase, 240 volt motors having a locked-rotor current less than 100 amperes, may normally be started at line voltage without problems.

2. Single Phase motors having locked-rotor currents exceeding the limits in specified in item 1 above may require special service considerations, and a **qualified employee** should be consulted before purchasing or connecting such motors.

3. Because allowable locked-rotor currents vary at different locations, a **qualified employee** shall be consulted before connecting polyphase motors to the **Company’s** distribution system.

13.1 **FIRE PUMPS**

1. Fire pump services are not required by the company to have a disconnect. **All** fire pump services shall be metered with current transformers. **All** fire pump metering points shall be clearly identified as such with permanent letters and/or numbers at least 1” in height of red color. **All** identification requirements are the responsibility of the **Customer**.

14.0 **STANDBY AND PARALLEL GENERATORS**

1. Improperly installed generation equipment can create serious hazards for **Company** personnel working on the distribution system as well as for other customers connected to the distribution system. The operation of improperly installed generators can also result in damage to **Customer’s** wiring, electrical equipment or the generator itself. To safeguard against these hazards, **Customer** owned generators shall be installed as follows:
(a) Standby generators shall be installed in compliance with the National Electrical Code, and local codes. They shall be properly connected through transfer switches so they are completely isolated from the Company’s distribution system. Power from a standby generator shall be isolated from the Company’s distribution system at all times. A sign is required at the metering point indicating the type and location of the standby system.

(b) Generators designed to run parallel with the Company’s system require special protective devices. It is essential the Customer consult the Company regarding these protective requirements before installing or attempting to operate parallel generators. Refer to Distribution Bulletin 18-08 Parallel Operation of Customer Generation. Contact a qualified employee for a copy of this reference. For metering Residential Distributed Generation refer to Drawing 14.1.

(c) Refer to Distribution Bulletin 18-17 Installation of Optional Standby System (Backup) Generator for Type I (System using a main panel and a generator) and Type II (System using a standby power kit installed in an outside combination meter-main) generator installations. Contact a qualified employee for a copy of this reference.
14.1 RESIDENTIAL DISTRIBUTED GENERATION
15.0 **3-WIRE, SELF CONTAINED DRAWINGS, (225A OR LESS)**
15.1 **RESIDENTIAL OVERHEAD INSTALLATION**

A. GENERAL NOTES

1. SERVICE DROP AND METER PROVIDED AND INSTALLED BY COMPANY.
2. METER SOCKET PROVIDED (NORMALLY) BY COMPANY, AND INSTALLED BY CUSTOMER.
3. CLEARANCES MUST BE PROVIDED AS SHOWN BELOW.
4. METER SOCKET SHOULD BE "READILY ACCESSIBLE" (SEE DEFINITIONS SECTION 2) AND ALLOW WORKSPACE AS ILLUSTRATED BELOW.
5. REFER TO SECTION 15.8 FOR REQUIREMENTS REGARDING CUSTOMER OWNED SOCKETS.

B. MOUNTING OF METER SOCKET

6. UNIT SHALL BE SURFACE MOUNTED, WITH CENTER OF UNIT BETWEEN 2'-6" AND 5'-6" ABOVE FINAL GRADE, IN A LEVEL AND PLUMB POSITION.
7. UNIT SHALL BE FASTENED TO BUILDING SECURELY USING METAL ANCHORS (FOR BRICK AND CONCRETE), TOGGLE BOLTS (FOR WOOD Siding) OR WOOD SCREWS (FOR WOOD STUDS, LOG WALLS, OR OTHER SOLID LUMBER). ALL SCREWS OR BOLTS SHALL BE 1/4" DIAMETER (MIN.) STAINLESS STEEL. NOT LESS THAN FOUR FASTENERS SHALL BE USED TO MOUNT SOCKET.

C. SERVICE DROP ATTACHMENT

8. DEVICE FOR ATTACHING SERVICE DROP TO BUILDING SHALL BE FURNISHED BY COMPANY AND INSTALLED SECURELY BY CUSTOMER AT THE VERTICAL CLEARANCE AS SHOWN BELOW.
9. IF VERTICAL CLEARANCE CANNOT BE MAINTAINED WITH THE INSTALLATION OF AN ATTACHMENT BOLT AS SHOWN BELOW, THE CUSTOMER SHALL INSTALL A STEEL SERVICE WASH. (SEE SECTION 15.2)
10. CONNECTIONS BETWEEN SERVICE DROP AND SERVICE ENTRANCE CONDUCTORS SHALL BE MADE (BY COMPANY PERSONNEL) BELOW WEATHERHEAD, FORMING A Drip LOOP.

D. CONNECTIONS

11. REFER TO SECTIONS 15.4 THRU 15.25 FOR METER SOCKET CONNECTION INSTRUCTIONS.
12. NEUTRAL CONNECTORS SHALL BE PARALLEL GROOVE SQUEEZE-ON'S ONLY.

E. CLEARANCES ABOVE FINAL GRADE

13. SERVICE DROPS (INCLUDES Drip LOOPS) NOT LESS THAN
14. HAY WAYS SUBJECT TO PEDESTRIAN OR RESTRICTED TRAFFIC ONLY.
15. ABOVE DRIVEWAYS, PARKING LOTS, AND ALLIES NOT SUBJECT TO TRUCK TRAFFIC.
16. ABOVE DRIVEWAYS, PARKING LOTS, AND ALLIES SUBJECT TO TRUCK TRAFFIC.

NOTE: WHERE THE HEIGHT OF A BUILDING EVEN WITH A MAST DOES NOT PERMIT THE ABOVE VALUES TO BE MET, THE CLEARANCE OVER RESIDENTIAL DRIVEWAYS ONLY FOR MULTIPLEX CABLES LIMITTED TO 150V TO GROUND MAY BE REDUCED AS FOLLOWS: SERVICE DROP - 120" Drip Loop - 100"

F. SERVICE DROP CONDUCTOR

- ***SERVICE DROP CONDUCTOR INCLUDING Drip LOOPS SHALL NOT BE LESS THAN 3" IN ANY DIRECTION FROM WINDOWS, DOORS, PORCHES, OR SIMILAR LOCATION.***

G. CLEARANCES

- ***SERVICE ENTRANCE CONDUCTOR SHALL NOT BE LESS THAN 3'-0" AT WEATHERHEAD (SEE SECTION 6.1)*
- **SERVICE DROP & Drip LOOP CLEARANCES:**
 - **NOT LESS THAN 7'-0"** REQUIRED WORK SPACE FOR COMPANY PERSONNEL.
 - **NOT LESS THAN 1'-6" FROM EITHER SIDE OF METER SOCKET** (LEVEL AND UNOBSTRUCTED)

NOTE: MOVING MACHINERY WITH MOVING PARTS SHALL BE NO LESS THAN 6" FROM METER EQUIPMENT (SEE SECTION 6.3).
15.2 RIGID METAL SERVICE MAST INSTALLATION AND ROOF CLEARANCES

A. GENERAL NOTES:
1. TYPICAL SINGLE PHASE RESIDENTIAL AND SMALL COMMERCIAL INSTALLATION, 200 AMPS OR LESS.
2. MASTS TALLER THAN 56" ABOVE ROOF SHALL BE GUED.
3. ONLY POWER SERVICE CONDUCTORS TO SERVE BUILDING MAY BE ATTACHED TO THE MAST EXCEPT BY SPECIAL PERM ission FOR GROUNDING OF COMMUNICATION DEVICES.

B. ROOF READILY ACCESSIBLE:
1. MAINTAIN NOT LESS THAN 10' VERTICAL CLEARANCE FOR ALL SERVICE CONDUCTORS ABOVE ALL PORTIONS OF THE ROOF, PORCHES AND ATTACHED DECKS.

NOTE:
SEE NESC RULE 2340.36 FOR ADDITIONAL INFORMATION ON SERVICE DROPS AND ROOF ACCESSIBILITY DEFINITION.
NOTES:

1. CROSSHATCHED AREA DENOTES UNDISTURBED OR RE-COMPACTED SOIL DIRECTLY BENEATH CABLE (EXTENDING 36" MIN. FROM BUILDING) AND CONDUIT (OR ELBOW) TO PREVENT LATER SETTLING OF CABLE AND CONDUIT. FAILURE TO PROVIDE COMPACT SOIL MAY RESULT IN DAMAGE TO CABLES, CONDUIT AND METER SOCKET.

2. 2-1/2" CONDUIT (RIGID OR PVC) FURNISHED AND INSTALLED BY CUSTOMER.

3. IF THE CUSTOMER INTENDS TO PLACE A CONCRETE OR ASPHALT DRIVE BETWEEN THE METER AND SUPPLY TRANSFORMER HE SHALL INSTALL A 2.5" MINIMUM PVC CONDUIT, NOT LESS THAN 24" UNDER THIS SURFACE, DIRECTLY IN LINE WITH THE METER AND TRANSFORMER. TEMPORARY END CAPS SHALL BE PLACED ON THE CONDUIT. THE LOCATION OF ONE END SHALL BE FLAGGED FOR LOCATION PURPOSES.

RESIDENTIAL UNDERGROUND INSTALLATION
15.4 2-WIRE, OH SERVICE, 120V, (100A OR LESS)

A. General Notes:

1. Service entrance line and load conductors, conduit straps, weatherhead, lock nuts, bushing, connectors, and miscellaneous mounting hardware furnished and installed by Customer.

2. Meter socket, meter socket hub and service drop attachment device furnished (normally) by Company and installed by Customer.

3. Meter and service drop furnished and installed by Company.

4. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Section 9.C and Section 15.1.

5. Installation that requires a steel service mast shall be installed by Customer as specified in Section 15.2.

6. Refer to Section 9.E and Section 15.8 for requirements regarding Customer owned meter sockets.

B. Mounting:

1. Meter socket and conduit shall be surface mounted.

2. Meter socket, conduit straps and weatherhead shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. Minimum of four (4) fasteners shall be used to mount socket. See reference in Section 9.0 Paragraph B -3 (f).

3. Conduit ends shall be equipped with proper bushing to protect conductors.

C. Connections:

1. Customer shall wire brush all conductors, apply a non-grit type inhibitor and terminate them by torquing to manufacturer’s specifications.

2. Company will check torque on all connectors prior to setting meter.

3. All line side (including neutral) connectors for use in these type devices shall be ballpoint, set screws, lay-in type or shall be removable porthole type with anti-rotation feature and shall be rated for conductor sizes 4 through 250 MCM (line) #4 through 350 MCM (neutral). Recommended connector torque shall be clearly labeled inside the socket.
DRAWING 15.4: 2-WIRE, OH SERVICE, 120V, (100A OR LESS)

NOTE:
FOR LOADS ABOVE 100A USE 3-WIRE SERVICE INSTALLATION.

2-WIRE, OH SERVICE, 120V, (100A OR LESS)
15.5 2-WIRE, UG SERVICE, 120V, (100A OR LESS)

A. General Notes:

1. Service entrance load conductors, conduit, conduit straps, lock nuts, bushing, connectors and miscellaneous mounting hardware furnished and installed by Customer.

2. Meter socket and closing plate furnished (normally) by Company and installed by Customer.

3. Meter and service lateral furnished and installed by Company. Customer to provide approximate final grade level within 6” prior to service lateral installation.

4. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Sections 9.C and Section 15.1.

5. Refer to Sections 9.E and Section 15.8 for requirements regarding Customer owned meter sockets.

6. Placement of meter socket in alley ways or areas where meter is subject to damage shall require advance approval of a qualified employee.

B. Mounting:

1. Meter socket and conduit shall be surface mounted.

2. Meter socket and conduit straps shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. A minimum of four (4) fastened shall be used to mount socket. See reference under Section 9.0 Paragraph B-3 (f).

3. 2-½” trade size rigid metal conduit or schedule 40 PVC furnished and installed by Customer as specified in Section 15.3.

4. Conduit ends shall be equipped with a proper bushing to protect conductors.

C. Connections:

1. Customer shall wire brush all load conductors, apply a non-grit type inhibitor and terminate them torquing to manufacturer’s specifications.

2. Company will wire brush and apply a non-grit type inhibitor to all line conductors, terminate by torquing to manufacturer’s specifications and check torque on load connectors prior to setting meter.

3. All line side (including neutral) connectors for use in these type devices shall be ball point set screw, lay-in type or shall be removable porthole type with anti-rotation feature and shall be rated for conductor size #4 through 250 MCM (line) and #4 through 350 MCM (neutral). Recommended connector torque shall be clearly label inside the socket.
NOTE:
FOR LOADS ABOVE 100A USE 3-WIRE SERVICE INSTALLATION.
15.6 3-WIRE, OH SERVICE, (120/240V OR 120/208V), (225A OR LESS)

A. General Notes:

1. Service entrance line and load conductors, conduit, conduit straps, weatherhead, lock nuts, bushings, connectors and miscellaneous mounting hardware furnished and installed by Customer.

2. Meter socket, meter socket hub and service drop attachment device furnished (normally) by Company and installed by Customer.

3. Meter and service drop furnished and installed by Company.

4. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Section 9.C and Section 15.1.

5. Installation that requires a steel service mast shall be installed by Customer as specified in Section 15.2.

6. Refer to Section 9.E and Section 15.8 for requirements regarding Customer owned meter sockets.

7. Placement of meter socket in alley ways or areas where meter is subject to damage shall require advance approval of qualified employee.

B. Mounting:

1. Meter socket and conduit shall be surface mounted.

2. Meter socket, conduit straps and weatherhead shall be fastened to building using anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) of four (4) fasteners shall be used to mount socket.

3. Conduit ends shall be equipped with proper bushing to protect conductors.

C. Connections:

1. Customer shall wire brush all conductors, apply a non-grit type inhibitor and terminate them by torquing to manufacturer’s specifications.

2. Company will check torque on all connectors prior to setting meter.

3. All line side (including neutral) connectors for use in these devices shall be ball point, screw, lay-in type or shall be removable porthole type with anti-rotation feature and shall be rated for conductor sizes #4 through 250 MCM (line) and #4 through 350 MCM (neutral). Recommended connector torque shall be clearly labeled inside the socket.
15.7 3-WIRE, UG SERVICE, (120/240V OR 120/208V), (225A OR LESS)

A. General Notes:

1. Service entrance load conductors, conduit, conduit straps, lock nuts, bushing, connectors and miscellaneous mounting hardware furnished and installed by Customer.

2. Meter socket and closing plate furnished (normally) by Company and installed by Customer.

3. Meter and service lateral furnished and installed by Company. Customer to provide approximates final grade level within 6” prior to service lateral installation.

4. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Section 9.C and Section 15.1.

5. Refer to Section 9.E and Section 15.8 for requirements regarding Customer owned meter sockets.

B. Mounting:

1. Meter socket and conduit shall be surface mounted.

2. Meter socket and conduit straps shall be fastened to building using metal anchors (brick and solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. A minimum of four (4) fastened shall be used to mount socket. See reference in Section 9.0 Paragraph B -3 (f).

3. 2-½” trade size rigid metal conduit or schedule 40 PVC furnished and installed by Customer as specified in Section 15.3.

4. Conduit ends shall be equipped with a proper bushing to protect conductors.

C. Connections:

1. Customer shall wire brush all load conductors, apply a non-grit type inhibitor and terminate them by torquing to manufacturer’s specifications.

2. Company will wire brush and apply a non-grit type inhibitor to all conductors, terminate by torquing to manufacturer’s specifications and check torque on load connectors prior to setting meter.

3. All line side (including neutral) connectors for use in these devices shall be ball point, set screws, lay-in type or shall be removable porthole type with anti-rotation feature and shall be rated for conductor sizes #4 through 250 MCM (line) and #4 through 350 MCM (neutral). Recommended connector torque shall be clearly labeled inside the socket.
DRAWING 15.7: 3-WIRE, UG SERVICE, (120/240V OR 120/208V), (225A OR LESS)

3-WIRE, UG SERVICE, (120/240V OR 120/208V), (225A OR LESS)
"RESIDENTIAL ONLY"

© 2007 Southern Company. All Rights Reserved.
15.8 3-WIRE, OH SERVICE, (120/240V), (225A OR LESS), (CUSTOMER OWNED SOCKET)

A. General Notes:

1. The device shown may be used when the inspection authority having jurisdiction requires the installation of a service disconnecting means adjacent to the meter location. A Company furnished socket may be used in conjunction with a separate disconnecting means as an alternative method.

2. Customer purchased equipment shall comply with the requirements in Section 9.E and Section 15.8 of this text as well as the requirements of the inspection authority having jurisdiction.

3. Meter socket, meter socket hub, service entrance line and load conductors, conduit, conduit straps, weatherhead, lock nuts, bushings, connectors and miscellaneous mounting hardware furnished and installed by Customer.

4. Service drop attachment device furnished (normally) by Company and installed by Customer.

5. Meter and service drop furnished and installed by Company.

6. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Section 9.C and Section 15.1.

7. Installations that require a steel service mast shall be installed by the Customer as specified in Section 15.2.

B. Mounting:

1. Meter socket and conduit shall be surface mounted.

2. Meter socket, conduit straps and weatherhead shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. A minimum of four (4) fasteners shall be used to mount socket.

3. Conduit ends shall be equipped with proper bushing to protect conductors.

C. Connections:

1. Customer shall wire brush all conductors, apply a non-grit type inhibitor and terminate them by torquing to manufacturer’s specifications.

2. Company will check torque on all connectors prior to setting meter.

3. All line (including neutral) connectors for use in these devices shall be ball point, set screw, lay-in type or shall be removable porthole type with anti-rotation feature and shall be rated for conductor sizes #4 through 250 MCM (line) and #4 through 350 MCM (neutral). Recommended connector torque shall be clearly labeled inside the socket.
DRAWING 15.8: 3-WIRE, OH SERVICE, (120/240V), (225A OR LESS), (CUSTOMER OWNED SOCKET)

NOTES:
1. CUSTOMER OWNED SOCKETS MAY VARY FROM ILLUSTRATION.
2. ALL SOCKETS USED ON COMMERCIAL APPLICATIONS SHALL HAVE A BY-PASS HANDLE.

3-WIRE, OH SERVICE, (120/240V OR 120/208V), (225A OR LESS), (CUSTOMER OWNED SOCKET)
CUSTOMER OWNED SOCKET
MINIMUM SPACING REQUIREMENTS
FOR OVER/UNDER CONSTRUCTION

3-WIRE, OH OR UG SERVICE, (120/240V OR 120/208V)
CUSTOMER OWNED METER SOCKET

*5TH TERMINAL REQUIRED IF USED ON 3W 120/208V SERVICE
* BYPASS DEVICE REQUIRED FOR COMMERCIAL SERVICE
*EFFECTIVE DATE FOR THESE REQUIREMENTS 5/1/07

SECTION 15.8.1
15.8.2 3-WIRE, CUSTOMER OWNED SOCKET SIDE BY SIDE CONSTRUCTION REQUIREMENTS

CUSTOMER OWNED METER SOCKET SPACING REQUIREMENTS (SIDE BY SIDE CONSTRUCTION)
3-WIRE, OH/UG SERVICE (120/240V OR 120/208V)

Note*: If the socket is used for U. G. service and is built with no obstruction to full depth on either side of block assembly area, (see bold square in drawing), min 2.50" clearance to each side is acceptable (as shown) provided 3" of unobstructed depth is also made available at both sides of socket blocks for line side conductors. ** If line side conductors can only be trained to one side of socket, side to block clearance must be 4" with 3" unobstructed depth at that side, and 2.50" block clearance to other side. Socket must accept 3" conduit at bottom.

Bypass horns are not acceptable. Unit shall have 5th terminal if used on 120/208 3 wire service. Socket shall have bypass device if for commercial use.

Effective date for these requirements 5/1/07.

© 2007 Southern Company. All Rights Reserved.
15.9 3-WIRE, UG SERVICE, (120/240V), (225A OR LESS), (CUSTOMER OWNED SOCKET)

A. General Notes:

1. The device shown may be used when the inspection authority having jurisdiction requires the installation of a service disconnecting means adjacent to the meter location. A Company furnished socket may be used in conjunction with a separate disconnecting means as an alternative method.

2. Customer purchased equipment shall comply with the requirements in Section 9.8 and Section 15.8 of this text as well as the requirements of the inspection authority having jurisdiction.

3. Meter socket, service entrance load conductors, conduit, conduit straps, lock nuts, bushings, connectors and miscellaneous mounting hardware furnished and installed by Customer.

4. Meter and service lateral furnished and installed by Company. Customer to provide approximate final grade level within 6” prior to service lateral installation.

5. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified Section 9.7 and Section 15.1.

B. Mounting:

1. Meter socket and conduit shall be surface mounted.

2. Meter socket and conduit straps shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. A minimum of four (4) fastened shall be used to mount socket. See reference in Section 9.0 Paragraph B -3 (f).

3. 2-½” trade size rigid metal conduit or schedule 40 PVC furnished and installed by Customer. Refer to Section 15.3.

4. Conduit ends shall be equipped with a proper bushing to protect conductors.

C. Connections:

1. Customer shall wire brush all load conductors, apply a non-grit type inhibitor and terminate them by torquing to manufacturer’s specifications.

2. Company will wire brush and apply a non-grit type inhibitor to all line conductors, terminate by torquing to manufacturer’s specifications and check torque on load connectors prior to setting meter.

3. All line side (including neutral) connectors for use in these type devices shall be ball point, set screws, lay-in type or shall be removable porthole type with anti-rotation features and shall be rated for conductor sizes #4 through 250 MCM (line) and #4 through 350 MCM (neutral). Recommended connector torque shall be clearly labeled inside the socket compartment.
DRAWING 15.9: 3-WIRE, UG SERVICE, (120/240V), (225A OR LESS), (CUSTOMER OWNED SOCKET)
15.10 3-WIRE, OH SERVICE, (120/240V OR 120/208V), DUPLEX METER SOCKET

A. General Notes:

1. Service entrance line and load conductors, conduit, conduit straps, weatherhead, lock nuts, bushings, connectors and miscellaneous mounting hardware furnished by Customer.

2. Meter socket, meter socket hub and service drop attachment device furnished (normally) by Company and installed by Customer.

3. Meter and service drop furnished and installed by Company.

4. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Section 9.C and Section 15.1.

5. Installation that requires a steel service mast shall be installed by Customer as specified in Section 15.2.

6. Refer to Sections 9.E and Section 15.8 for requirements regarding Customer owned meter sockets.

B. Mounting:

1. Meter socket and conduit shall be surface mounted.

2. Meter socket, conduit straps and weatherhead shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. A minimum of four (4) fasteners shall be used to mount socket.

3. Conduit ends shall be equipped with proper bushing to protect conductors.

C. Connections:

1. Customer shall wire brush all conductors, apply a non-grit type inhibitor and terminate them by torquing to manufacturer’s specifications.

2. Company will check torque on all connectors prior to setting meter.

3. All line (including neutral) connectors for use in these devices shall be ball point, set screws, lay-in type or shall be removable type with anti-rotation feature and shall be rated for conductor sizes #4 through 250 MCM (line) and #4 through 350 MCM (neutral). Recommended connector torque shall be clearly labeled inside the socket.

D. Marking:

1. Each socket position and the corresponding building unit served (suite, apartment or office) shall be accurately, clearly and permanently marked in enamel paint before meters are installed.
2. Each meter socket position shall be marked on both the inside and outside surfaces.

3. Letters and/or numbers shall be a minimum 1” height of contrasting color.
NOTES:

SINGLE POSITION SOCKETS SHOULD BE USED IF OVER 350 MCM WIRE. (SEE SECTION 9.0 D PARAGRAPH 2c)

M-2520 SOCKET

FURNISHED BY COMPANY

INSTALLED BY CUSTOMER.

MAY BE USED FOR NETWORK (3 W 120/208 Y SERVICE)

"WHEN USED FOR 120/208 Y SERVICE A FIFTH TERMINAL METER JAW IS REQUIRED"

METER SOCKET HUB

FURNISHED BY COMPANY

AND INSTALLED BY CUSTOMER.

MARKING AS REQUIRED (SEE D 1–3) WITH ENAMEL PAINT

LAY-IN CONNECTORS TORQUE TO MANUFACTURER'S SPECIFICATIONS.

"2 SINGLE POSITION SOCKETS SHOULD BE USED IF OVER 350 MCM WIRE. SEE SECTION 9.0 D PARAGRAPH 2c"

CUSTOMERS SERVICE ENTRANCE CONDUCTORS (CUSTOMER TO WIRE BRUSH AND APPLY NON-GRIT INHIBITOR.)

APPLY NON-GRIT INHIBITOR.

350 MCM PORTHOLE CONNECTOR (C-13205) FURNISHED BY COMPANY INSTALLED BY CUSTOMER.

TORQUE SET SCREW TO 275 IN.LBS.

STAINLESS STEEL 1/2" FLAT WASHER.

3/4" SPRING WASHER/NULL (CAPTIVE) "BELLEVILLE" TORQUE TO 200 IN.LBS.

LINE - SIDE CONNECTIONS (TYPICAL)

3-WIRE, OH SERVICE, (120/240V OR 120/208V), DUAL METER SOCKET

** CUSTOMER OWNED SOCKETS OF THIS TYPE SHALL HAVE A BYPASS HANDLE” XDSP

DRAWN BY:

DATE: 4/22/07

TRACED BY:

SCALE: N/C

REVISIONS: 1/21/05 1/22/05 1/3/04 4/19/04

APPROVED:

SECTION: 15.10

© 2007 Southern Company. All Rights Reserved.
15.11 3-WIRE, UG SERVICE, (120/240V OR 120/208V), DUPLEX METER SOCKET

A. General Notes:

1. Service entrance load conductors, conduit, conduit straps, lock nuts, bushings, connectors and miscellaneous mounting hardware furnished and installed by Customer.

2. Meter socket furnished (normally) by Company and installed by Customer.

3. Meter and service lateral furnished and installed by Company. Customer to provide approximate final grade level within 6” prior to service lateral installation.

4. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Section 9.C and Section 15.1.

5. Customer purchased equipment shall comply with the requirements in Section 9.E and Section 15.8 of this text as well as the requirements of the inspection authority having jurisdiction.

B. Mounting:

1. Meter socket and conduit shall be surface mounted.

2. Meter socket and conduit straps shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts, (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¾” diameter (minimum) stainless steel. A minimum of four (4) fasteners shall be used to mount socket. See reference in Section 9.0 Paragraph B-3 (f).

3. 2-½” trade size rigid metal conduit or schedule 40 PVC furnished and installed by Customer as specified in Section 15.3.

4. Conduit ends shall be equipped with a proper bushing to protect conductors.

C. Connections:

1. Customer shall wire brush all load conductors, apply a non-grit type inhibitor and terminate them by torquing to manufacturer’s specifications.

2. Company will wire brush all line side connections in Company furnished sockets, install compression connectors to line conductors, apply nongrit type inhibitor to the line side bus (as illustrated), terminate by torquing to 200-inch lbs. Torque will be checked on load connectors.

3. On Customer owned meter sockets all line side (including neutral) connectors for use in these devices shall be either NEMA spaced studs for compression connectors or ball point, set screws, lay-in type or shall be removable porthole type with anti-rotation feature and shall be rated for conductor sizes #4 through 250 MCM (line) and #4 through 350 MCM (neutral). Recommended connector torque shall be clearly labeled inside the socket.
D. Marking:

1. Each socket position and the corresponding building unit served (suite, apartment or office) shall be accurately, clearly and permanently marked in **enamel** paint before meters are installed.

2. Each meter socket position shall be marked on both the inside and outside surfaces. Letters and/or numbers shall be minimum 1” height of contrasting color.
DRAWING 15.11: 3-WIRE, UG SERVICE, (120/240V OR 120/208V), DUPLEX METER SOCKET

NOTES:
COMBINED CONNECTED LOAD MUST NOT EXCEED 200 AMPS. (SEE SECTION 9.0 D PARAGRAPH 2c)

M-2520 SOCKET
FURNISHED BY COMPANY
INSTALLED BY CUSTOMER.
MAY BE USED FOR
NETWORK (3 Ω, 3 W
120/208 Y SERVICE)

“WHEN USED FOR 120/208V
Y SERVICE A FIFTH TERMINAL
METER JAW IS REQUIRED”

MARKING AS REQUIRED
IN ENAMEL PAINT
(SEE D. 1-2)

LAY-IN CONNECTORS TORQUE
TO MANUFACTURER’S SPECIFICATIONS.

“COMBINED CONNECTED
LOAD MUST NOT EXCEED
200 AMPS. SEE SECTION
9.0 D PARAGRAPH 2C.”

3/4” SPRING WASHER/NUT
(CAPTIVE) — “BELLEVILLE”
TORQUE TO 200 IN-LBS.

STAINLESS STEEL
1/2” FLAT WASHER

APPLY NON-GRIT
INHIBITOR.

3-WIRE, UG SERVICE, (120/240V OR 120/208V).
DUPLEX METER SOCKET

LINE - SIDE CONNECTIONS (TYPICAL)

XDSP

DRAWN BY C.R. JACKSON DATE 7/27/06
TRACED BY C.R. JACKSON SCALE NONE
APPROVED C.R. JACKSON

REVISIONS 7/27/06, 8/24/06, 8/27/06
GEORGIA POWER COMPANY
SECTION 15.11

NOT LESS THAN 30”
48” MAX.

CONDUIT BUSHING

2-1/2” CONDUIT
(FURNISHED AND INSTALLED BY
CUSTOMER).

NOT LESS
THAN 24”
30” MAX.

2’-6” TO 5’-6”
ABOVE FINAL
GRADE LEVEL

S’ STRAP

6” MAX.

12” MAX.

14’-4” MAX.

BLUEBOOK 2007 – Revision Date: June 04, 2007
© 2007 Southern Company. All Rights Reserved.
15.12 **COMMERCIAL 3-WIRE, OH SERVICE, (120/240V OR 120/208V), (225A OR LESS)**

A. **General Notes:**

1. Service entrance line and load conductors, conduit, conduit straps, weatherhead, lock nuts, bushings, connectors and miscellaneous mounting hardware furnished and install by **Customer**.

2. Meter socket, meter socket hub and service drop attachment device furnished (normally) by **Company** and installed by **Customer**.

3. Meter and service drop furnished and installed by **Company**.

4. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specific in Section 9.C and Section 15.1.

5. Installations requiring a steel service mast shall be installed by the **Customer** as specified in Section 15.2.

6. Refer to Section 9.E and Section 15.8 for requirements regarding **Customer** owned meter sockets.

B. **Mounting:**

1. Meter socket and conduit shall be surface mounted.

2. Meter socket, conduit straps and weatherhead shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. A minimum of four (4) fasteners shall be used to mount socket. See reference in Section 9.0 Paragraph B -3 (f).

3. Conduit ends shall be equipped with proper bushing to protect conductors.

C. **Connections:**

1. **Customer** shall wire brush all conductors, apply a non-grit type inhibitor and terminate them by torquing to manufacturer’s specifications.

2. **Company** will check torque on all connectors prior to setting meter.

3. All **line side** (including neutral) connectors for use in these devices shall be ball point, set screws, lay-in type or shall be removable port hole type with anti-rotation feature and shall be rated for conductor sizes #4 through 250 MCM (line) and #4 through 350 MCM (neutral). Recommended connector torque shall be clearly labeled inside the socket.
DRAWING 15.12: COMMERCIAL 3-WIRE, OH SERVICE, (120/240V OR 120/208V), (225A OR LESS)
15.13 COMMERCIAL 3-WIRE, UG SERVICE, (120/240V OR 120/208V), (225A OR LESS)

A. General Notes:

1. Service entrance load conductors, conduit, conduit straps, lock nuts, bushings, connectors and miscellaneous mounting hardware furnished and installed by Customer.

2. Meter socket and closing plate furnished (normally) by Company and installed by Customer.

3. Meter and service lateral furnished and installed by Company. Customer to provide approximate final grade level within 6” prior to service lateral installation.

4. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified Section 9.C and Section 15.1.

5. Refer to Section 9.E and Section 15.8 for requirements regarding Customer owned meter sockets.

B. Mounting:

1. Meter socket and conduit shall be surface mounted.

2. Meter socket and conduit straps shall be fastened to building using metal anchors (brick and solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. A minimum of four (4) fasteners shall be used to mount socket. See reference under Section 9.0 Paragraph B-3 (f).

3. 2-½” trade size rigid metal conduit or schedule 40 PVC furnished and installed by Customer as specified in Section 15.3.

4. Conduit ends shall be equipped with a proper bushing to protect conductors.

C. Connections:

1. Customer shall wire brush all load conductors, apply a non-grit type inhibitor and terminate them by torquing to manufacturer’s specifications.

2. Company will wire brush and apply a non-grit type inhibitor to all line conductors, terminate by torquing to manufacturer’s specifications and check torque on load connectors prior to setting meter.

3. All line side (including neutral) connectors for use in these devices shall be ball point, set screw, lay-in type or shall be removable porthole type with anti-rotation feature and shall be rated for conductor sizes #4 through 250 MCM (line) and #4 through 350 MCM (neutral). Recommended connector torque shall be clearly labeled inside the socket.
DRAWING 15.13: COMMERCIAL 3-WIRE, UG SERVICE, (120/240V OR 120/208V), (225A OR LESS)

LOAD (A)

LOAD CONDUCTORS FURNISHED AND INSTALLED BY CUSTOMER.

M-2480 SOCKET MAY BE USED FOR NETWORK (3 W, 3 W, 120/208 Y SERVICE)

SERVICE LATERAL CONDUCTORS FURNISHED AND INSTALLED BY COMPANY.

INSTALL LOCK NUT AND BUSHING

2 1/2" CONDUIT FURNISHED AND INSTALLED BY CUSTOMER.

CONNECTOR OR BUSHING

GROUNDING ELECTRODE CONNECTOR TERMINAL

NEUTRAL

NEUTRAL

LINE (A)

LINE (B)

DRAWING 15.13: COMMERCIAL 3-WIRE, UG SERVICE, (120/240V OR 120/208V), (225A OR LESS)
15.14 3-WIRE, OH SERVICE, (120/240V OR 120/208V), (226A TO 400A)

A. General Notes:

1. This arrangement is the preferred method of metering residential and commercial services above 226 amperes up to 400 amperes using a Class 320 meter.

2. Contact a qualified employee well in advance of required service date to determined best method of service.

3. The same requirements shall be applicable for the 400 ampere, self contained socket as specified for the 200 ampere socket with regard to location, height, accessibility to equipment, unobstructed working space, clearances, proper mounting and mast/weatherhead arrangement. (See Sections 9.C, 15.1, and 15.2).

4. Service entrance line and load conductors, conduit, conduit straps, weatherhead, lock nuts, bushings, connectors and miscellaneous mounting hardware furnished and installed by Customer.

5. Meter socket, meter socket hub and service drop attachment device furnished by Company and installed by Customer.

6. Meter and service drop furnished and installed by Company.

7. All 400 ampere meter sockets shall be equipped with a by-pass handle.

B. Mounting:

1. Meter socket and conduit shall be surface mounting.

2. Meter socket, conduit straps and weatherhead shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. Only the pre-punched holes provided by the manufacturer shall be used to mount this socket. See reference in Section 9.0 Paragraph B-3 (f).

3. Conduit ends shall be equipped with proper bushing to protect conductors.

C. Connections:

1. Customer shall wire brush all conductors, apply a non-grit type inhibitor and terminate them by torquing to manufacturer’s specifications.

2. Company will check torque on all connectors prior to setting meter.
DRAWING 15.14: 3-WIRE, OH SERVICE, (120/240V OR 120/208V), (226A TO 400A)

TORQUING REQUIREMENTS

<table>
<thead>
<tr>
<th>Connector Set Screws:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LINE</td>
<td>275 IN-LBS</td>
</tr>
<tr>
<td>LOAD</td>
<td>275 IN-LBS</td>
</tr>
<tr>
<td>NEUTRAL</td>
<td>275 IN-LBS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nut/Washer Assembly:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2" (ON CONNECTORS)</td>
<td>275 IN-LBS</td>
</tr>
</tbody>
</table>

CAUTION: FLAT WASHER MUST BE PLACED BETWEEN NUT/WASHER ASSEMBLY AND CONNECTOR.

DRAWING 15.14: 3-WIRE, OH SERVICE, (120/240V OR 120/208V), (226A TO 400A)

PARALLEL LOAD CONDUCTORS SHOWN FOR PURPOSES OF ILLUSTRATION.

M-2643 SOCKET MAY BE USED FOR NETWORK (3 φ, 3 W, 120/208 Y SERVICE)

"**WHEN USED FOR 120/208V Y SERVICE A FIFTH TERMINAL METER JAW IS REQUIRED**"

BY-PASS LEVER - NOT A LOAD BREAKING DEVICE

2'-6" TO 5'-6" ABOVE FINAL GRADE LEVEL

NOTE: ALL 320 SOCKETS MUST HAVE A BY-PASS HANDLE.

3-WIRE, OH SERVICE, (120/240V OR 120/208V), (226A TO 400A)
15.15 3-WIRE, UG SERVICE, (120/240V OR 120/208V), (226A TO 400A)

A. General Notes:

1. This arrangement is the preferred method of metering for residential and commercial services above 225 amperes up to 400 amperes using a Class 320 meter.

2. Contact a qualified employee well in advance of required service date to determine best method of service.

3. The same requirements shall be applicable for the 400 ampere, self contained meter socket as specified for the 200 ampere socket in regard to location, height, accessibility to equipment, unobstructed working space, clearances, proper mounting and conduit arrangement. (Refer to Sections 9.C, 15.1 and 15.3.)

4. Service entrance load conductors, conduit, conduit straps, lock nuts, bushings, connectors and miscellaneous mounting hardware furnished and installed by Customer.

5. Meter socket provided by Company and installed by Customer.

6. Meter and service lateral provided and installed by Company.

7. All class 400 ampere meter sockets shall be equipped with a by-pass handle.

B. Mounting:

1. Meter socket and conduit shall be surface mounted.

2. Meter socket and conduit straps shall be fastened to building using lead anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. Only the pre-punched holes provided by the manufacturer shall be used to mount this socket. See reference in Section 9.0 Paragraph B-3 (f).

3. 3-1/2” trade size rigid metal conduit or schedule 40 PVC furnished and installed by Customer.

4. Conduit ends shall be equipped with a proper bushing to protect conductors.

C. Connections:

1. Customer shall wire brush all load conductors, apply a non-grit type inhibitor and terminate them by torquing to manufacturer’s specifications.

2. Company will wire brush and apply a non-grit type inhibitor to all line conductors, terminate by torquing to manufacturer’s specification and check torque on load connectors prior to setting meter.
DRAWING 15.15: 3-WIRE, UG SERVICE, (120/240V OR 120/208V), (226A TO 400A)

TORQUING REQUIREMENTS
CONNECTOR SET SCREWS:
LINE 275 IN.LBS.
LOAD 275 IN.LBS.
NEUTRAL 275 IN.LBS.

NUT/WASHER ASSEMBLY: 1/2" (ON CONNECTOR) 275 IN.LBS.
CAUTION: FLAT WASHER MUST BE PLACED BETWEEN NUT/WASHER ASSEMBLY AND CONNECTOR.

PARALLEL LOAD CONDUCTORS SHOWN FOR PURPOSES OF ILLUSTRATION.

NOTE:
NEUTRAL BLOCK
MAY BE BUILT IN CENTER POSITION

COMPANY MAY USE 4/0 COMPRESSION TUBULAR TO FLAT, 1/2" HOLE, ON LINE SIDE FOR LINE SIDE AND NEUTRAL.

TWO TYPES OF LINE SIDE CONNECTORS ARE AVAILABLE.
SINGLE PORTHOLE:
WIRE RANGE: UP TO 600MCM
COMMODITY #C-13500.

TWIN PORTHOLE:
SUPPLIED WITH SOCKET
WIRE RANGE: UP TO TWO - 250 MCM
COMMODITY #C-13504.

GROUNDING ELECTRODE CONNECTOR TERMINAL

SOCKET COMES EQUIPPED WITH TWIN PORTHOLE CONNECTORS FOR #4 TO 250 MCM ON THE LOAD SIDE.

CONDUIT FURNISHED AND INSTALLED BY CUSTOMER IN THE LEFT OR RIGHT BOTTOM KNOCKOUT PROVIDED.

3-WIRE, UG SERVICE, (120/240V OR 120/208V), (226A TO 400A)

M-2643 SOCKET MAY BE USED FOR NETWORK (3 Ø, 3 W, 120/208 Y SERVICE)

"WHEN USED FOR 120/208V Y SERVICE A FIFTH TERMINAL METER JAW IS REQUIRED"

BY-PASS LEVER
NOT A LOAD BREAKING DEVICE

LINE SIDE
LOAD SIDE

2'-6" TO 5'-6"
ABOVE FINAL GRADE LEVEL

NOTE:
ALL 320 SOCKETS MUST HAVE A BY-PASS HANDLE.

LOAD CONDUCTORS FURNISHED AND INSTALLED BY CUSTOMER
LINE CONDUCTORS FURNISHED AND INSTALLED BY COMPANY.
A. General Notes:

1. The device shown may be used when the inspection authority having jurisdiction requires the installation of a service disconnecting means adjacent to the meter.

2. The Customer shall install a grounded 5th Jaw assembly in this equipment if the supply source is 208Y/120 service.

3. Customer purchased equipment shall comply with the requirements in Sections 9.A, 9.C, 9.E, 15.18, and 15.19 of this book, as well as the requirements of the inspection authority having jurisdiction.

4. Requirements regarding accessibility to equipment, unobstructed working space, clearances, proper mounting and conduit arrangement are specified in Section 9.C, 15.1, 15.2, and 15.3.

B. Underground Service: (Illustrated)

1. Wiring Space and Line-side Connections:

 a. Line side studs shall be equipped with nut, flat washer, and pressure maintaining (as a "Belleville") spring washer. All parts shall be plated to prevent corrosion.

 b. Where Customer furnished connectors are used, they shall meet the requirements of U.L. "486 B".

 c. Torquing requirements shall be clearly marked in the line side compartment.

C. Mounting:

1. Meter socket and conduit shall be surface mounted.

2. Metering center and conduit straps shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. A minimum of four (4) fasteners shall be used to mount metering center. See reference in Section 9.0 Paragraph B - 3 (f).

3. Minimum Conduit Requirements:

 a. Two Positions: (1) 2-½” conduit

 b. Three or Four Positions: (2) 2-½” or (1) 3” conduit

 c. Five or Six Positions: (3) 2-½”, or (1) 3” and (1) 2-½” or (1) 4” conduit

4. Conduit ends shall be equipped with a proper bushing to protect conductors.
D. **Overhead Service:**

1. Requirements for the metering center are the same as underground except the *line side* connection arrangement is not specified. All service entrance conductors and connectors shall be furnished and installed by *Customer*.

E. **Marking:**

1. Each socket position and the corresponding building unit served (suite, apartment, or office) shall be accurately, clearly and permanently marked in *enamel* paint before meters are installed as specified in Section 9.C.

2. Each meter socket position shall be labeled on both the inside and outside surfaces.

3. Letters and/or numbers shall be a minimum 1” height of contrasting color.
NOTES:

1. Georgia Power Company will not terminate service laterals directly to customer owned breaker or fused disconnect. Contractor shall provide dedicated line side terminating lugs with N.C.W. A. spaced studs. (Refer to Section 9.0 E.4) and Section Drawing 15.18.

2. All sockets used on commercial applications shall have a by-pass handle.

3-WIRE, UG, (120/240V OR 120/208V), (2-6 POSITIONS), (CUSTOMER OWNED)
15.17 3-WIRE, UG, (120/240V OR 120/208V), (ABOVE 6 POS.), (CUSTOMER OWNED)

A. General Notes:

1. The device shown may be used when the inspection authority having jurisdiction requires the installation of a service disconnecting means adjacent to the meter.

2. The Customer shall install a grounded 5th Jaw assembly in this equipment if the supply source is 208Y/120 Service.

3. Customer purchased equipment shall comply with the requirements in Sections 9.A, 9.C, 9.E, and 15.19 of this text as well as the requirements of the inspection authority having Jurisdiction.

4. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Sections 9.C, 15.1 and 15.2.

B. Underground Service:

1. Wiring Space and Line-side Connections:

 a. Line side studs shall be equipped with nut, flat washer, and pressure maintaining (as a “Belleville”) spring washer. All parts shall be plated to prevent corrosion.

 b. Where Customer furnished connectors are used, they shall meet the requirements of U.L., “486 B”.

 c. Torquing requirements shall be clearly marked in the line side compartment.

C. Mounting:

1. Meter socket and conduit shall be surface mounted.

2. Metering center and conduit straps shall be fastened to building using metal anchors (brick and solid masonry), toggle bolts (other masonry siding) or wood screws (studs or solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. A minimum of four (4) fasteners shall be used to mount metering center. See reference in Section 9.0 Paragraph B -3 (f).

3. Torquing requirements shall be clearly marked in the line side compartment.

4. Conduit ends shall be equipped with a proper bushing to protect conductors.

D. Overhead Service:

1. Requirements for the metering center are the same as underground except the line side connection arrangement is not specified. All service entrance conductors and connectors shall be furnished and installed by Customer.
E. Marking:

1. Each socket position and the corresponding building unit served (suite, apartment or office) shall be accurately, clearly and permanently labeled in **enamel** paint before meters are installed as specified in Section 9.C.

2. Each meter socket position shall be marked on both the inside and outside surfaces.

3. Letters and/or numbers shall be minimum 1” height of contrasting color.
DRAWING 15.17: 3-WIRE, UG, (120/240V OR 120/208V), (ABOVE 6 POS.), (CUSTOMER OWNED)

NOTE:
*All sockets used on commercial applications shall have a bypass handle.

3-WIRE, UG, (120/240V OR 120/208V), (ABOVE 6 POS.), (CUSTOMER OWNED)
15.18 **UNDERGROUND LINE – SIDE SERVICE TERMINATION FACILITIES**

![Diagram of underground line side service termination facilities](image)

SECTION VIEW "A"

SIDE VIEW

FRONT VIEW

DIMENSIONAL REF.

- A: 3/4" MIN.
- B: 1" MIN.
- C: 1 1/2" MIN.
- D: 1 3/4"
- E: 2" MIN.
- F: 3 1/2" MIN.
- G: 4" MIN.
- H: 2" MIN.
- 2 1/2" MAX.

SINGLE POSITION (400 AMP MAX.)

MULTIPLE POSITION (800 AMP MAX.)

MULTIPLE POSITION (1000 AMP MAX.)

TERMINATING BOLT SPACING DETAIL

FRONT VIEW SPACING REQUIREMENTS FOR TERMINATING FACILITIES

14" MIN. (UP TO 800 AMP)
18" MIN. (UP TO 1000 AMP)

OVER 1000 AMPS LOAD, THIS WILL CHANGE.
CLEARANCE FOR CUSTOMER OWNED METER CENTERS

1. DIMENSIONS "B", "C" AND "D" SHALL BE MAINTAINED ALONG WITH UNOBSSTRUCTED WORKSPACE IN FRONT OF METERS EVEN WITH CABINET DOORS FULLY OPENED, OR TO THE REQUIRED STOP POINT (90% FOR EXAMPLE).

3. ALL SOCKETS USED ON 208Y/120V SERVICE SHALL HAVE FIFTH TERMINALS.

4. ALL SOCKETS USED ON COMMERCIAL APPLICATIONS SHALL HAVE BY-PASS HANDLES.

DIMSENSIONS - INCHES

\[
\begin{array}{|c|c|c|c|c|}
\hline
A" PROTRUSION & "B" MIN. & "C" MIN. & "D" MIN. \\
\hline
\text{UP TO 11"} & 6" & 4" & 11" \\
\text{11" TO 16"} & 12" & 10" & 11" \\
\hline
\end{array}
\]

NOTES:

DRAWN BY: A.A. WD
TRACED BY: X.D. HALE
APPROVED: X.D. HALE

SECTION 15.19
15.20 OH SERVICE, TYPICAL TEMPORARY INSTALLATION

SERVICE DROPS INCLUDING DRIP LOOPS SHALL HAVE CLEARANCES NOT LESS THAN THE FOLLOWING:

12 FT. - ABOVE SIDEWALKS AND AREAS SUBJECT TO PEDESTRIAN TRAFFIC ONLY.

15 FT. - ABOVE RESIDENTIAL DRIVEWAYS NOT SUBJECT TO TRUCK TRAFFIC.

16 FT. - ABOVE PUBLIC DRIVEWAYS, ALLEYS, AND ROADS SUBJECT TO TRUCK TRAFFIC.

NOTES:
1. TO OBTAIN SERVICE ACROSS A HIGHWAY, CONTACT A QUALIFIED EMPLOYEE.

2. CUSTOMER SHALL FURNISH, INSTALL AND MAINTAIN
 A. TREATED WOOD RATED FOR IN GROUND USE SHALL BE USED FOR POLE [CLASS 7 (5" AT TOP) OR 6X6 POST], BRACES AND STAKES.
 B. SERVICE ENTRANCE CONDUCTORS AND CONDUIT WHERE REQUIRED.
 C. SERVICE EQUIPMENT.
 D. GROUNDING ELECTRODE WITH NOT LESS THAN NO.6 COPPER GROUNDING ELECTRODE CONDUCTOR.
 3. A FIFTH LUG OR GROUND LUG MUST BE FURNISHED AND INSTALLED BY CUSTOMER FOR NETWORK ON WYE SERVICES.
15.21 UG SERVICE, TEMPORARY INSTALLATION

- **Service Post Installation**
 - Weatherproof service equipment furnished and installed by customer.
 - Meter socket furnished by company and installed by customer.
 - #6 (min.) grounding electrode conductor furnished and installed by customer.
 - 2" - 1/2" conduit furnished and installed by customer.
 - 4" x 4" treated post furnished and installed by customer.
 - Standard 45° elbow only.
 - Not less than 24".

- **Typical Locations**
 - Future service lateral to house.
 - Service lateral stub-up (underground cable marker).
 - Temporary service pole 3' to 5'.
 - Transformer pad.
 - P/L.
 - Curbing line.
 - Service lateral.

- **UG Service, Temporary Installation**

BlueBook 2007 – Revision Date: June 04, 2007
© 2007 Southern Company. All Rights Reserved.
15.22 3-WIRE, OH SERVICE, (120/240V), FOR MOBILE HOME PARKS

CUSTOMER POLE (PREVIOUSLY TREATED) NOT LESS THAN CLASS 5 AND NOT LESS THAN 6" IN DIAMETER

1/4" MIN. GALVANIZED STEEL GUY TO BE FURNISHED BY CUSTOMER (IF NECESSARY)

SERVICE DROP AND ATTACHMENT FURNISHED BY COMPANY

CUSTOMER'S SERVICE ENTRANCE CONDUCTORS SHALL NOT BE LESS THAN 3'-0" IN LENGTH AT W/E (SEE SECTION 6.A.7)

SERVICE DROPS INCLUDING DIP LOOP SHALL HAVE CLEARANCES NOT LESS THAN THE FOLLOWING:
- 12 FT. - ABOVE SIDEWALKS AND AREAS SUBJECT TO PEDESTRIAN TRAFFIC ONLY.
- 15 FT. - ABOVE RESIDENTIAL DRIVEWAYS NOT SUBJECT TO TRUCK TRAFFIC.
- 16 FT. - ABOVE PUBLIC DRIVEWAYS, ALLEYS AND ROADS SUBJECT TO TRUCK TRAFFIC.

METER EQUIPMENT TO BE MOUNTED WITH STEEL POLE MOUNTING BRACKETS (N2780) OR WOODEN POLE MOUNTING BRACKETS (N10120) AND ACCS IF AVAILABLE

METER SOCKET M2520 FURNISHED BY COMPANY

ALL WEATHER PROOF EQUIPMENT

EACH METER SOCKET SHALL BE MARKED WITH LOT NUMBER IN LETTERS AND/OR NUMBERS 1" HIGH WITH ENAMEL PAINT ON INSIDE AND OUTSIDE OF EACH SOCKET POSITION

CUSTOMER OWNED CONDUIT AND CONDUCTOR

GROUNGING ELECTRIC CONDUCTORS INSTALLED PER N.E.C. AND LOCAL CODES

STANDARD 45° ELBOW ONLY

DEPTH ACCORDING TO CURRENT N.E.C.

CUSTOMER TO FURNISH AND INSTALL SUFFICIENT NUMBER AND SIZE CONDUIT.

GENERAL NOTES:
1. BREAKER CENTER (SHOWN) FURNISHED AND INSTALLED BY CUSTOMER. METER SOCKET RATING SHALL BE SUFFICIENT FOR LOAD SERVICED BUT NOT LESS THAN 125 AMPS.
2. EACH METER POSITION MUST CLEARLY IDENTIFY LOT NUMBER (XXX)

3-WIRE, OH SERVICE, (120/240V), FOR MOBILE HOME PARKS

XDSF

DRAWN BY: A.A.WH
DATE: 5/1/07
TRACED BY: A.A.WH
SCALE: N/C
APPROVED

REVISIONS: 2/1/04, 5/1/04, 9/1/04, 10/1/04

© 2007 Southern Company. All Rights Reserved.
15.23 3-WIRE, OH SERVICE, (120/240V), FOR SINGLE MOBILE HOME

CUSTOMER POLE (PRESSURE TREATED)

SERVICE DROP AND ATTACHMENT
FURNISHED BY COMPANY

CUSTOMER'S SERVICE ENTRANCE CONDUCTORS
SHALL NOT BE LESS THAN 3'-0" IN LENGTH
AT WEATHERHEAD. (SECTION 6.A.7)

12' – ABOVE SPACES AND
WAYS SUBJECT TO
PEDESTRIANS ONLY.

15' – ABOVE DRIVEWAYS,
PARKING LOTS, AND ALLEYS
NOT SUBJECT TO TRUCK TRAFFIC

16' – ABOVE DRIVEWAYS,
PUBLIC ROADS, OR ALLEYS
SUBJECT TO TRUCK TRAFFIC

METER EQUIPMENT
INSOFS OR INSDS
TO BE MOUNTED
WITH POLE
MOUNTING BRACKETS
LUG BOLTS ARE
AVAILABLE

METER SOCKET FURNISHED BY COMPANY

METER SOCKET SHALL BE MARKED
WITH LOT NUMBER IN LETTERS AND/OR NUMBERS
1" HIGH WITH ENAMEL PAINT ON INSIDE AND
OUTSIDE OF SOCKET

ALL WEATHER PROOF CIRCUIT
BREAKER OR FUSED DISCONNECT
FURNISHED BY CUSTOMER

GROUNDING ELECTRODE CONDUCTORS
INSTALLED PER N.E.C. AND LOCAL CODES
BY CUSTOMER. (MAY CONNECT TO EITHER
THE TERMINAL IN THE METER BASE OR IN
THE MAIN DISCONNECT, BUT NOT BOTH.)

CUSTOMER OWNED AND INSTALLED CONDUIT
AND CONDUCTOR. AS PER N.E.C. AND LOCAL CODES.

4'-0" MIN.

LONGERENCE 45"-
ELBOW ONLY

CUSTOMER TO FURNISH
AND INSTALL SUFFICIENT
NUMBER AND SIZE CONDUIT.

3-WIRE, OH SERVICE, (120/240V),
FOR SINGLE MOBILE HOME
15.24 3-WIRE, OH SERVICE, (120/240V), MANUF. HOME, (CUSTOMER OWNED SOCKET)

A. General Notes:

1. These notes and drawings refer to manufactured home specifically designed to have meter socket and/or service equipment mounted to an exterior wall.

2. **Customer** purchased equipment shall comply with the requirements in Sections 9.A, 9.C, 9.E, and 15.19 of this text as well as the requirements of the inspection authority having Jurisdiction.

3. Meter socket, meter socket hub, conduit straps, weatherhead, outside disconnect (Main) and feeder from the main to panel in the manufactured home to be installed by the electrical contractor.

4. Meter and service drop furnished and installed by **Company**.

5. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Sections 9.C and 15.1.

6. Placement of meter socket in areas where meter is subject to damage shall require advance approval of a **qualified employee**.

B. Mounting:

1. Meter socket and conduit shall be surface mounted.

2. Meter socket and conduit straps shall be fastened to building using lead anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. Only the pre-punched holes provided by the manufacturer shall be used to mount this socket.

3. Conduit ends shall be equipped with a proper bushing to protect conductors.

C. Connections:

1. Manufacturer or designee shall wire brush all conductors, apply a non-grit type inhibitor and terminate them by torquing to manufacturer’s specifications.

2. **Company** will check torque on all connectors prior to setting meter.
NOTES:
1. CUSTOMER OWNED SOCKETS MAY VARY FROM ILLUSTRATION, BUT NOT FROM BLUE BOOK REQUIREMENTS.
2. SEE SECTION 15.8.1 AND 15.8.2 FOR CUSTOMER OWNED SOCKETS MINIMUM SPACING CONSTRUCTION REQUIREMENTS.
15.25 3-WIRE, UG SERVICE, (120/240V), MANUF HOME, (CUSTOMER OWNED SOCKET)

A. General Notes:

1. These notes and drawings refer to manufactured homes specifically designed to have meter socket and/or service equipment mounted to an exterior wall.

2. **Customer** purchased equipment shall comply with the requirements in Section 9.A, 9.C, 9.E, and 15.19 of this text as well as the requirements of the inspection authority having Jurisdiction.

3. Meter socket, outside disconnect (main) and feeder from the main to the panel in the manufactured home to be installed by the electrical contractor.

4. Meter and service lateral furnished and installed by **Company**. **Customer** to provide approximate final grade level within 6” prior to service lateral installation.

5. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Sections 9.C and 9.E.

6. Placement of meter socket where meter is subject to damage shall require advance approval of a **qualified employee**.

B. Mounting:

1. Meter socket and conduit shall be surface mounted.

2. 2-½” trade size rigid metal conduit or schedule 40 PVC furnished and installed by **Customer**.

3. Meter socket and conduit straps shall be fastened to building using lead anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. Only the pre-punched holes provided by the manufacturer shall be used to mount this socket. See reference in Section 9.0 Paragraph B -3 (f).

4. Conduit ends shall be equipped with a proper bushing to protect conductors.

C. Connections:

1. Manufacturer or designee shall wire brush all load conductors, apply a non-grit type inhibitor and terminate them by torquing to manufacturer’s specifications.

2. **Company** will wire brush and apply a non-grit type inhibitor to all line conductors, terminate by torquing to manufacturer’s specifications and check torque on load connectors prior to setting meter. Recommended connector torque shall be clearly labeled inside the socket compartment.

3. A Disclaimer label shall be installed on the inside & outside of the meter socket.
DRAWING 15.25: 3-WIRE, UG SERVICE, (120/240V), MANUF HOME, (CUSTOMER OWNED SOCKET)

NOTE:
1. CUSTOMER OWNED SOCKETS MAY VARY FROM ILLUSTRATION, BUT NOT FROM BLUE BOOK REQUIREMENTS.
2. SEE SECTION 15.8.1 AND 15.8.2 FOR CUSTOMER OWNED SOCKETS MINIMUM SPACING CONSTRUCTION REQUIREMENTS.

3-WIRE, UG SERVICE, (120/240V)
MANUF. HOME, (CUSTOMER OWNED SOCKET)

© 2007 Southern Company. All Rights Reserved.
15.26 3-WIRE, FARM SERVICE POLE, (120/240V OR 120/208V), (225A OR LESS)
15.27 3-WIRE, UG SERVICE, (120/240V OR 120/208V), MOBILE HOME PARKS

NOTES:
1. POST, RACEWAY, AND STABILIZER FOOT SHALL BE GALVANNEALED STEEL
 AND PAINTED. POST MUST BE 12 GAUGE GALVANNEALED STEEL.
2. SEALING RING FOR RING TYPE SOCKET SHALL BE COMPANY APPROVED SCREW TYPE.
3. SEE SECTION 9.0, G, (2) FOR ADDITIONAL INFORMATION

3-WIRE, UG SERVICE, (120/240V OR 120/208V), MOBILE HOME PARKS

XDSP
16.0 4-WIRE, 3-PHASE, SELF CONTAINED DRAWINGS, (225A OR LESS)
16.1 THIS SECTION LEFT INTENTIONALLY BLANK
16.2 4-WIRE, 3-PHASE, DELTA SERVICE, (225A OR LESS), (SEE POWER LEG)
16.3 4-WIRE, 3-PHASE, OH SERVICE, (225A OR LESS)

A. General Notes:

1. When this socket is utilized for 277/480Y volt, service, restrictions apply. Refer to Section 16.5.

2. Service entrance line and load conductors, conduit, conduit straps, weatherhead, lock nuts, bushings, connectors and miscellaneous mounting hardware furnished and installed by Customer.

3. Meter socket, meter socket hub and service drop attachment device furnished (normally) by Company and installed by Customer.

4. Meter and service drop furnished and installed by Company.

5. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Sections 9.C and 15.1.

6. Installations that require a steel service mast shall be installed by Customer as specified in Section 15.2.

B. Mounting:

1. Meter socket and conduit shall be surface mounted.

2. Meter socket, conduit straps and weatherhead shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. A minimum of four (4) fasteners shall be used to mount socket.

3. Conduit ends shall be equipped with proper bushing to protect conductors.

C. Connections:

1. Customer shall wire brush all conductors, apply a non-grit type inhibitor and terminate them by torquing to manufacturer’s specifications.

2. Company will check torque on all connectors prior to setting meter.
DRAWING 16.3: 4-WIRE, 3-PHASE, OH SERVICE, (225A OR LESS)

NOTE:
1- ON DELTA INSTALLATION NO.3 POSITION MUST BE POWER LEG
(SEE SECTION 16.2).

4-WIRE, 3-PHASE, OH SERVICE, (225A OR LESS)
16.4 4-WIRE, 3-PHASE, UG SERVICE, (225A OR LESS)

A. General Notes:

1. When this socket is utilized for 277/480Y volt service, restrictions apply. Refer to Section 16.5.

2. Service entrance load conductors, conduit, conduit straps, lock nuts, bushings, connectors and miscellaneous mounting hardware furnished and installed by Customer.

3. Meter socket furnished (normally) by Company and installed by Customer.

4. Meter furnished and installed by Company.

5. Service lateral furnished and installed by Customer.

6. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Sections 9.C and 15.1.

B. Mounting:

1. Meter socket and conduit shall be surface mounted.

2. Meter socket and conduit straps shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. A minimum of four (4) fasteners shall be used to mount socket. See reference in Section 9.0 Paragraph B-3 (f).

3. 2-½” trade size rigid metal conduit or schedule 40 PVC furnished and installed by Customer as specified in Section 15.3.

4. Conduit ends shall be equipped with a proper bushing to protect conductors.

C. Connections:

1. Customer shall wire brush all conductors, apply a non-grit type inhibitor and terminate them by torquing to manufacturer’s specifications.

2. Company will check torque on all connectors prior to setting meter.
DRAWING 16.4: 4-WIRE, 3-PHASE, UG SERVICE, (225A OR LESS)

NOTES:
1. ON DELTA INSTALLATION NO. 3 POSITION ("C" PHASE) MUST BE POWER LEG (SEE SECTION 16.2).
2. CONDUIT SHALL ENTER SOCKET THROUGH LEFT OR RIGHT (SHOWN) KNOCKOUT BUT NOT THROUGH CENTER KNOCKOUT.
3. IF SERVICE IS 480Y/277 VOLTS, SEE SECTION 16.5 FOR ADDITIONAL REQUIREMENTS.
16.5 4-WIRE, 3-PHASE, (277/480V), (225A OR LESS)

A. General Notes:

1. A load side disconnect shall be used with this socket and be located immediately adjacent to the socket. The disconnecting means shall be rated not less than the load to be carried and shall have interrupting rating at system voltage sufficient for the current that must be interrupted.

2. If service ground fault protection is installed ahead of the meter, Customer shall be metered with instrument transformers.

3. Contact a qualified employee well in advance of required service date to determine best method of metering.

4. Requirement regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Sections 9.C and 15.1.

5. The disconnecting means, service entrance conductors, conduit, conduit straps, lock nuts, bushings, connectors and miscellaneous mounting hardware furnished and installed by Customer.

6. Meter socket furnished by Company and installed by Customer.

B. Mounting:

1. Meter socket and conduit shall be surface mounted.

2. Meter socket and conduit straps shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. A minimum of four (4) fasteners shall be used to mount socket. See reference in Section 9.0 Paragraph B -3 (f).

3. Conduit ends shall be equipped with proper bushing to protect conductors.

C. Connections:

1. Customer shall wire brush all conductors, apply a non-grit type inhibitor and terminate them by torquing to manufacturer’s specifications.

2. Company will check torque on all connectors prior to setting meter.
DRAWING 16.5: 4-WIRE, 3-PHASE, (277/480V), (225A OR LESS)

CONDUIT AND SERVICE LATERAL SHALL BE FURNISHED BY CUSTOMER, NOT LESS THAN 6" FROM CONCRETE

CUSTOMER TO FURNISH AND INSTALL SUITABLE NUMBER AND SIZE CONDUIT

4-WIRE, 3-PHASE, (277/480V), (225A OR LESS)
16.6 4-WIRE, 3-PHASE, POLE INSTALLATION, (225A OR LESS), (CUSTOMER OWNED POLE)

SERVICE ENTRANCE CONDUCTOR SHALL NOT BE LESS THAN 3'-0" IN LENGTH AT WEATHERHEAD. (SEE SECTION 6.A.7)

CLASS 6 TREATED POLE TO SUPPORT SERVICE WIRES AND SERVICE EQUIPMENT FURNISHED AND INSTALLED BY CUSTOMER. COMPANY MAY REQUIRE CUSTOMER TO FURNISH AND INSTALL GUYN OR OTHER SUPPORT ADEQUATE TO SUPPORT SERVICE DROP. POLE DEPTH NOT LESS THAN 5'.

CUSTOMER OWNED SERVICE EQUIPMENT WEATHERPROOF.

5'-6" MAX TO 2'-6" TO FINAL GRADE LEVEL

GROUND WIRE FURNISHED AND INSTALLED BY CUSTOMER.

B9506 MOUNTING BRACKET FOR S. C. METER SOCKET FURNISHED BY COMPANY; INSTALLED BY CUSTOMER.

CUSTOMER FURNISHED SERVICE DROP

COMPANY FURNISHED

LOAD LINE

VERTICAL GROUND CLEARANCES SHALL BE NOT LESS THAN THAT SHOWN IN SECTION 15.1.E

CUSTOMER OWNED POLE
17.0 **3-Wire Transformer Rated Drawings, (Above 225A)**
17.1 3-WIRE, OH SERVICE, TRANSOCKET, WALL MOUNTED, (401A TO 600A)

NOTES:
1. METER SOCKET MOUNTED OUTDOORS.
2. COMPANY TO MAKE ALL SERVICE LATERAL CONNECTIONS AT POLE.
3. CUSTOMER TO MAKE ALL LINE AND LOAD CONNECTIONS IN TRANSOCKET.
4. METER SOCKET SHALL BE MOUNTED ON THE BUILDING.

3-WIRE, OH SERVICE, TRANSOCKET, WALL MOUNTED,
(401A TO 600A)
17.2 3-WIRE, OH SERVICE, (ABOVE 600A), (USING CURRENT XFMR’S)

A. General Notes:

1. Service drop and meter furnished and installed by Company.

2. Current transformers furnished by Company and may be issued to Customer for installation or installed by company employees.

3. Meter socket furnished by Company and installed by Customer.

4. 1-1/2” schedule 40 PVC, trade size threaded rigid or intermediate metal conduit furnished and installed by Customer.

5. Metering control cable furnished and installed by Company.

6. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Sections 9.C and 15.1.

7. The length of service drop over roof shall not exceed 4’.

B. Mounting:

1. Socket and 1-1/2” conduit shall be surface mounted.

2. Meter socket and conduit straps shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs and solid lumber). All screws and bolts shall be ¼” (minimum) diameter stainless steel. A minimum of four (4) fasteners shall be used to mount meter socket.

3. Conduit ends shall be equipped with proper bushing to protect conductors.

C. Connections:

1. All connections shall be made by Company.
17.2 3-WIRE, OH SERVICE, (ABOVE 600A), (USING CURRENT XFMER’S)

Service entrance conductor shall not be less than 3'-0" in length at weatherhead. (See Section 6.4.7)

Service mast – not less than 2" rigid metal conduit

24" max between current transformers and 1 1/2" weatherhead

1 1/2" schedule 40 PVC, trade size threaded rigid or intermediate metal conduit furnished and installed by customer

Vertical clearance see section 15.1.E or 15.2.A & B

Insulated bracket furnished by company

Where attachment height exceeds 36" above roof customer shall furnish and install min. 1/4" galvanized steel guy wire or equivalent for supporting service drop.

3-WIRE, OH SERVICE, (ABOVE 600A), (USING CURRENT XFMER’S)
17.3 3-WIRE, UG SERVICE, (ABOVE 600A), (USING CURRENT XFMR’S)

A. General Notes:

1. Service Lateral and meter furnished and installed by Company. Customer to provide approximate final grade level within 6” prior to service lateral installation.

2. Current transformers furnished by Company and may be issued to Customer for installation or installed by company employees.

3. Meter socket and current transformer cabinet furnished by Company and installed by Customer.

4. 1-1/2” Schedule 40 PVC, threaded rigid or intermediate metal conduit furnished and installed by Customer.

5. Metering control cable furnished and installed by company.

6. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Sections 9.C and 15.1.

B. Mounting:

1. Cabinet, socket and conduits for service lateral and meter control cable shall be surface mounted.

2. Cabinet, socket and conduit straps shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws shall be ¼” (minimum) diameter stainless steel. A minimum of four (4) fasteners shall be used to mount both cabinet and socket. See reference in Section 9.0 Paragraph B -3 (f).

3. Conduits shall be furnished and installed by Customer.

C. Connections:

1. All connections shall be made by Company.
DRAWING 17.3: 3-WIRE, UG SERVICE, (ABOVE 600A), (USING CURRENT XFMR'S)
17.4 3-WIRE, MOUNTING OF METER CABINET ON (CUSTOMER OWNED POLE)

NOTE:
1. CABINET SHOWN, SAME PROVISIONS APPLY TO ALL CABINET AND SOCKETS PROVIDED BY COMPANY.

3-WIRE, MOUNTING OF METER CABINET ON CUSTOMER OWNED POLE

SIDE

FRONT

POLE GROUND

COMPANY LOCK

CUSTOMER’S CLASS 6 POLE TREATED

M-2090 CABINET

6’-6” TO 5’-0” TO FINAL GRADE LEVEL

XDSP
17.5 3-WIRE, OH SERVICE, (ABOVE 600A), (CUSTOMER OWNED POLE)

- LINE
- NEUTRAL
- CUSTOMER'S POLE 6" DIAMETER
- CUSTOMER OWNED AND INSTALLED
- LOAD
- METERING CONTROL CABLE AND C.T'S FURNISHED BY COMPANY. CONTROL CABLE INSTALLED BY COMPANY. CURRENT TRANSFORMERS MAY BE ISSUED TO THE CUSTOMER FOR INSTALLATION.
- 1-1/2" SCHEDULE 40 PVC, TRADE SIZE THREADS, RIGID OR INTERMEDIATE METAL CONDUIT AND WEATHER-FAD, FURNISHED AND INSTALLED BY CUSTOMER.
- 6" DIAMETER POLE ADJACENT TO SUPPORT WIRES AND EQUIPMENT TO BE FURNISHED AND INSTALLED BY CUSTOMER. POLE NOT LESS THAN 5'.
- CONDUIT STRAPS
- METER SOCKET TO BE MOUNTED WITH STEEL POLE MOUNTING BRACKET.
- M-2400 SOCKET FURNISHED BY COMPANY AND INSTALLED BY CUSTOMER.
- FULL SIZE LB TYPE FITTING
- 3-WIRE, OH SERVICE, ON CUSTOMER OWNED POLE, (ABOVE 600A)

NOTE: CUSTOMER TO FURNISH DRIVEN GROUND SYSTEM.

DRAWN BY: PA DATE: 5/25/02 REVISIONS: 17/1/03, 2/14/04
TRACED BY: SCALE: GEORGIA POWER COMPANY
APPROVED: 1/6/04 SECTION 17.5
18.0 4-WIRE TRANSFORMER RATED DRAWINGS, (ABOVE 225A)
18.1 **4-WIRE, 3-PHASE, TRANSOCKET ON PEDESTAL, UG XFRM., (226A TO 600A)**

A. **General Notes:**

1. This arrangement may be utilized for services above 225 amperes and up to 600 amperes.

2. Transocket furnished by **Company** and installed by **Customer**.

3. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Sections 9.C and 15.1.

B. **Mounting:**

1. Transocket shall be mounted on two pedestal, with **special permission**. (Preferred method is to mount on building).

2. Pedestals shall be set in 24” of concrete. Pedestal shall be 2”x6”x½” galvanized channel, 8’ in length.

3. Conduit ends shall be equipped with proper bushing to protect conductors.

C. **Connections:**

1. **Customer** is responsible for line and load connection in Transocket as to manufacturer specification listed inside Transocket. The transocket is provided with 600MCM dual rated, two port, non rotational connectors.
18.2 4-WIRE, 3-PHASE, OH TO OH, (226A TO 600A), (CUSTOMER OWNED POLE)

A. General Notes:

1. This arrangement may be utilized for services above 225 amperes and up to 600 amperes.
2. Service drop and meter furnished and installed by Company.
3. Transsocket furnished by Company and installed by Customer.
4. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Sections 9.C and 15.1.
5. On delta service the phase having the highest voltage to ground (high leg) shall be in the right hand or "C" phase position in the transsocket.

B. Mounting:

1. Transsocket shall be mounted to pole with equipment furnished by Company and installed by Customer.
2. Conduit ends shall be equipped with proper bushing to protect conductors.

C. Connections:

1. Customer is responsible for line and load connection in Transsocket as to manufacturer specification listed inside Transsocket. The transsocket is provided with 600MCM dual rated, two port, non rotational connectors.
DRAWING 18.2: 4-WIRE, 3-PHASE, OH TO OH, (226A TO 600A), (CUSTOMER OWNED POLE)
18.3 4-WIRE, 3-PHASE, OH TO UG, (226A TO 600A), (CUSTOMER OWNED POLE)

A. General Notes:

1. This arrangement may be utilized for services from 226 amperes to 600 amperes.

2. Service drop and meter furnished and installed by Company.

3. Transocket furnished by Company and installed by Customer.

4. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Section 9.C.

5. On delta service the phase having the highest voltage to ground (high leg) shall be in the right hand or "C" phase position in the transocket.

B. Mounting:

1. Transocket shall be mounted to pole with equipment furnished by Company and installed by Customer.

2. Conduit ends shall be equipped with proper bushing to protect conductors.

C. Connections:

1. Customer is responsible for line and load connection in Transocket as to manufacturer specification listed inside Transocket. The transocket is provided with 600 MCM dual rated, two port, non-rotational connectors.
18.4 4-WIRE, 3-PHASE, TRANSOCKET, (226A TO 600A), WALL-MOUNT, PER Svc. POINT

A. General Notes:

1. This arrangement may be utilized for services above 225 amperes and up to 600 amperes.

2. Conductors, conduit, conduit straps, lock nuts, bushings, connectors, and miscellaneous mounting hardware furnished and installed by Customer.

3. Transocket furnished by Company and installed by Customer.

4. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment as specific in Sections 9.C and 15.1.

5. This is the preferred method.

6. On delta service the phase having the highest voltage to ground (high leg) shall be in the right hand or "C" phase position in the transocket.

B. Mounting:

1. Transocket shall be surface mounted.

2. Transocket and conduit straps shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding), or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. A minimum of four (4) fasteners shall be used to mount socket and cabinet.

3. Conduit ends shall be equipped with proper bushing to protect conductors.

C. Connections:

1. Each socket position and the corresponding building unit served (suite, apartment or office) shall be accurately, clearly and permanently labeled with enamel paint before meters are installed.

2. Each meter socket and cabinets shall be labeled on both the inside and outside surfaces.

3. Letters and/or numbers shall be minimum 1” in height of contrasting color.

4. Customer is responsible for line and load connection in Transocket as to manufacturer’s specification listed Transocket, unless the Company installs the service conductors. The transocket is provided with 600 MCM dual rated, two port, non-rotational connectors.
DRAWING 18.4: 4-WIRE, 3-PHASE, TRANSOCKET, (226A TO 600A), WALL-MOUNT, PER SVC. POINT

NOTES:
1. METER SOCKET MOUNTED OUTDOORS.
2. COMPANY TO MAKE ALL SERVICE LATERAL CONNECTIONS AT POLE OR PADMOUNT TRANSFORMER.
3. CUSTOMER TO MAKE ALL LOAD SIDE CONNECTIONS IN TRANSOCKET.
4. CUSTOMER TO MAKE LINE SIDE CONNECTIONS UNLESS COMPANY INSTILLS SERVICE CONDUCTORS.
5. METER SOCKET SHALL BE MOUNTED ON THE BUILDING.

4-WIRE, 3-PHASE, TRANSOCKET,
(SERVICE FROM 226A TO 600A),
WALL MOUNT, PER SVC. POINT

DRAWN BY: [Signature]
DATE: 4/2/06
TRACED BY: [Signature]
SCALE: \(\text{NONE}\)

GEORGIA POWER COMPANY
SECTION 18.4

BLUEBOOK 2007 – Revision Date: June 04, 2007
© 2007 Southern Company. All Rights Reserved.
18.5 3-PHASE METER INSTALLATION, COMMON DISTRIBUTION POINT

A. General Notes:

1. This arrangement may be utilized for services above 225 amperes and up to 600 amperes.

2. Conductors, conduit, conduit straps, lock nuts, bushings connectors, and miscellaneous mounting hardware furnished and installed by Customer.

3. Meter sockets furnished by Company and installed by Customer.

4. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Sections 9.C and 15.1.

B. Mounting:

1. Meter socket, cabinets, trough and conduits shall be surface mounted.

2. Meter socket, instrument transformer cabinet and conduit straps shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding), or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. A minimum of four (4) fasteners shall be used to mount socket or cabinet. No conduit shall enter at the top of the transformer rated meter socket.

3. Conduit ends shall be equipped with proper bushing to protect conductors.

C. Connections:

1. Customer is responsible for line and load connection in Transocket as to manufacturer specification listed inside Transocket. The transocket is provided with 600 MCM dual rated, two port, non-rotational connectors.

D. Marking:

1. Each socket position and the corresponding building unit served (suite, apartment or office) shall be accurately, clearly and permanently labeled with enamel paint before meters are installed.

2. Each meter socket position shall be labeled on both the inside and outside surfaces.

3. Letters and/or numbers shall be minimum 1” in height of contrasting color.
NOTES:

1. METER SOCKETS, INSTRUMENT TRANSFORMERS AND CABINETS MOUNTED OUTDOORS EXCEPT WHERE SPECIAL PERMISSION OBTAINED PRIOR TO STARTING WORK FROM QUALIFIED EMPLOYEE. FOR METER LOCATION SEE SECTIONS 9.1-9.7 AND 15.1.

2. COMPANY TO MAKE ALL SERVICE LATERAL CONNECTIONS AT POLE OR PADMOUNT TRANSFORMER AND ALL METERING CONTROL CABLE CONNECTIONS IN METER SOCKET AND INSTRUMENT TRANSFORMER CABINET.

3. CUSTOMER TO MAKE ALL LINE AND LOAD CONNECTIONS IN SELF-CONTAINED METER SOCKETS AND TRANSOCKET.

4. CONDUCTORS CARRYING METERED AND UNMETERED ENERGY SHALL NOT BE ALLOWED IN SAME WIRING TROUGH OR CONDUIT.

5. EACH SOCKET POSITION AND CORRESPONDING BUILDING UNIT SHALL BE PERMANENTLY LABELED WITH ENAMEL PAINT; EACH METER SOCKET SHALL BE LABELED ON BOTH INSIDE AND OUTSIDE (SEE 9.1-3).

6. REFER TO SECTION 12.0 "BONDING & GROUNDING OF METER EQUIPMENT".

3-PHASE METER INSTALLATION,
COMMON DISTRIBUTION POINT
18.6 4-WIRE, 3-PHASE, TRANSOCKET, OH SVC., (226A TO 600A), PREFERRED METHOD

A. General Notes:

1. This arrangement may be utilized for services above 225 amperes and up to 600 amperes.

2. Conductors, conduit, conduit straps, lock nuts, bushings, connectors and miscellaneous mounting hardware furnished and installed by Customer.

3. Transocket furnished by Company and installed by Customer.

4. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Section 9.C.

5. This is the preferred method, (Wall Mounted).

6. On delta service the phase having the highest voltage to ground (high leg) shall be in the right hand or "C" phase position in the transocket.

B. Mounting:

1. Meter cabinet shall be surface mounted.

2. Meter cabinet and conduit straps shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber). All screws and bolts shall be ¼” diameter (minimum) stainless steel. A minimum of four (4) fasteners shall be used to mount socket or cabinet.

3. Conduit ends shall be equipped with proper bushing to protect conductors.

C. Connections:

1. Each socket position and the corresponding building unit served (suite, apartment or office shall be accurately, clearly and permanently labeled with enamel paint before meters are installed.

2. All meter socket and cabinets shall be labeled on both the inside and outside surfaces.

3. Letters and/or numbers shall be minimum 1” in height of contrasting color.

4. Customer is responsible for line and load connection in Transocket as to manufacturer specification listed inside Transocket unless GPC installs the service conductors. The transocket is provided with 600 MCM dual rated, two port, non-rotational connectors.
DRAWING 18.6: 4-WIRE, 3-PHASE, TRANSOCKET, OH SVC., (226A TO 600A), PREFERRED METHOD

NOTES:
1. METER SOCKET MOUNTED OUTDOORS.
2. COMPANY TO MAKE ALL SERVICE LATERAL CONNECTIONS AT POLE.
3. CUSTOMER TO MAKE ALL LINE AND LOAD CONNECTIONS IN TRANSOCKET.
4. METER SOCKET SHALL BE MOUNTED ON THE BUILDING.
5. EACH SOCKET POSITION AND CORRESPONDING BUILDING UNIT SHALL BE PERMANENTLY LABELED WITH ENAMEL PAINT. METER SOCKET SHALL BE LABELED BOTH INSIDE AND OUTSIDE (SEE C.1)

4-WIRE, 3-PHASE, TRANSOCKET, OH SVC.,
(226A TO 600A), PREFERRED METHOD

XDSP
18.7 4-WIRE, 3-PHASE OH SERVICE, MAST MOUNTED CT’S, (ABOVE 600A)

A. General Notes:

1. Service drop and meter furnished and installed by Company.

2. Current transformers provided by company and may be issued to Customer for installation or installed by company employee.

3. Meter socket furnished by company and installed by Customer.

4. 1-1/2” schedule 40 pvc, trade size threaded rigid or intermediate metal conduit furnished and installed by Customer.

5. No conduit shall enter at the top of the meter socket.

6. Metering control cable furnished and installed by company.

7. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Sections 9.C and 15.1.

8. The length of service drop over roof shall not exceed 4’.

B. Mounting:

1. Socket and 1-1/2” conduit shall be surface mounted. Refer to Section 9.F.

2. Meter socket and conduit straps shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber).

3. All screws and bolts shall be ¼” (minimum) diameter stainless steel. A minimum of four (4) fastener shall be used to mount meter socket.

4. Conduit ends shall be equipped with proper bushing to protect conductors.

C. Connections:

1. Company shall make all connections.
DRAWING 18.7: 4-WIRE, 3-PHASE OH SERVICE, MAST MOUNTED CT'S, (ABOVE 600A)

SERVICE ENTRANCE CONDUCTOR SHALL NOT BE LESS THAN 3'-0" IN LENGTH AT WEATHERHEAD. (SEE SECTION 6, A, 7)

SERVICE MAST - NOT LESS THAN 2" RIGID METAL CONDUIT

NO MORE THAN 24" FROM CURRENT TRANSFORMERS TO 1 1/2" WEATHERHEAD

MAST CLAMP COMMODITY No.:
- C4320 FOR 2-1/2"
- C4360 FOR 3-1/2"
- C4380 FOR 4-1/2"

METER CONTROL CABLE

VERTICAL CLEARANCE SEE 15.1E OR 15.2A & B

INSULATED BRACKET FURNISHED BY COMPANY FOR GPC ATTACHMENT

FULL SIZE LB TYPE FITTING

WHERE ATTACHMENT HEIGHT EXCEEDS 36" ABOVE ROOF CUSTOMER SHALL FURNISH AND INSTALL MIN. 1/4" GALVANIZED STEEL GUY WIRE OR EQUIVALENT FOR SUPPORTING SERVICE DROP.

4-WIRE, 3-PHASE, OH SERVICE, MAST MOUNTED CT'S, (ABOVE 600A)
18.8 4-WIRE, 3-PHASE OH SERVICE, CT’S ON BUILDING SIDE, (ABOVE 600A)

A. General Notes:

1. Service drop and meter furnished and installed by **Company**.

2. Instrument transformers provided by company and may be issued to **Customer** for installation or installed by the company employee.

3. Meter socket furnished by company and installed by **Customer**.

4. 1-1/2” schedule 40 pvc, trade size threaded rigid or intermediate metal conduit furnished and installed by **Customer**.

5. No conduit shall enter at the top of the meter socket.

6. Metering control cable furnished and installed by company.

7. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Sections 9.C and 15.1.

8. The length of service drop over roof shall not exceed 4’.

B. Mounting:

1. Socket and 1-1/2” conduit shall be surface mounted. Refer to Section 9.F.

2. Meter socket and conduit straps shall be fastened to building using metal anchors (brick or solid masonry), toggle bolts (other masonry siding) or wood screws (studs, solid lumber).

3. All screws and bolts shall be ¼” (minimum) diameter stainless steel. A minimum of four (4) fasteners shall be used to mount meter socket.

4. Conduit ends shall be equipped with proper bushing to protect conductors.

C. Connections:

1. **Company** shall make all connections.
NOTES:
1. CLEVIS, INSULATOR, AND BOLT FURNISHED BY G.P.C.
AND INSTALLED BY ELECTRICAL CONTRACTOR.
2. CURRENT TRANSFORMERS AND WEATHERHEAD OF
1-1/2" CONDUIT SHALL BE MOUNTED AT A MAXIMUM
OF 24" FROM EACH OTHER.

SERVICE ENTRANCE CONDUCTOR SHALL NOT
BE LESS THAN 3'-0" IN LENGTH AT
WEATHERHEAD. (SEE SECTION 6.A.7)

SEE NOTE No. 2

"1-1/2" SCHEDULE
40 PVC
TRADE SIZE
THREADED RIGID
OR INTERMEDIATE
METAL CONDUIT
FOR METER
CONTROL CABLE.

VERTICAL CLEARANCE
ABOVE FINISHED GRADE
AS SPECIFIED BY NEC

METER SOCKET
OR CABINET
AS DESIGNATED
BY G.P.C

FULL SIZE LB TYPE FITTING

2'-6" TO
5'-6" ABOVE
FINAL GRADE LEVEL

FINAL GRADE LEVEL

4-WIRE, 3-PHASE, OH SERVICE, CT’S ON BUILDING SIDE, (ABOVE 600A)
18.9 4-WIRE, 3-PHASE, PADMOUNT TRANSFORMER, (ABOVE 600A)

A. General Notes:

1. Conductors, conduit, conduit straps, lock nuts, bushings, connectors and miscellaneous mounting hardware furnished and installed by Customer.

2. Meter socket and pedestal furnished (normally) by Company and installed by Customer.

3. Meter and instrument transformers installed by Company.

4. Requirements regarding accessibility to equipment and unobstructed working space adjacent to metering equipment are specified in Sections 9.C and 15.1.

5. Placement of meter socket in alley ways or areas where meter is subject to damage shall require advance approval of a qualified employee.

B. Mounting:

1. Meter socket and conduit straps shall be fastened to the pedestal using bolts. Bolts shall be ¼” diameter (minimum) stainless steel. A minimum of four (4) fasteners shall be used to mount socket.

2. Conduit ends shall be equipped with a proper bushing to protect conductors.

3. The preferred method is on the outside wall. Meter socket or cabinet maybe mounted on a pedestal with special permission from a qualified employee.

C. Connections:

1. Company shall make all connections.
NOTES:

1. THIS METHOD OF SERVICE MUST BE APPROVED BY A QUALIFIED EMPLOYEE.
2. COMPANY SHALL MAKE ALL CONNECTIONS AT PADMOUNT AND METER SOCKET.
3. INSTRUMENT TRANSFORMERS TO BE INSTALLED IN SECONDARY COMPARTMENT OF THE PADMOUNT TRANSFORMER BY A QUALIFIED EMPLOYEE.
4. METER SOCKET/CABINET SHALL NOT BE MOUNTED ON THE PADMOUNT TRANSFORMER.
5. METER SOCKET/CABINET AND PEDESTAL FURNISHED BY COMPANY AND INSTALLED BY CUSTOMER.
6. C.T.'S ON SECONDARY SPADES, METER CONTROL CABLE FURNISHED AND INSTALLED BY COMPANY.

4-WIRE, 3-PHASE, PADMOUNT TRANSFORMER, (ABOVE 600A)
18.10 4-WIRE 3-PHASE UG, (ABOVE 600A) USING CURRENT XFMR'S

COMPANY UNDERGROUND SERVICE LATERAL

METER SOCKET
(M-2392 or M-2393)

2'-6" TO 5'-6" ABOVE FINAL GRADE LEVEL

1-1/2" SCHEDULE 40 PVC TRADE SIZE THREADED NICKEL OR INTERMEDIATE METAL CONDUIT FOR METER CONTROL CABLE

NOT LESS THAN 12" MAXIMUM

CUSTOMER CONNECTION CABINET
(OPTIONAL) SUPPLIED BY CUSTOMER

CURRENT TRANSFORMER CABINET M-2245 OR M-2246
THIS INSTALLATION FOR SERVICES ABOVE 600 AMP
* FOR GROUNDING REQUIREMENTS REFER TO SECTION 12.0

NOT LESS THAN 18"

CONDUIT STRAP

CONDUIT FOR SERVICE LATERAL

CUSTOMER TO FURNISH AND INSTALL SUFFICIENT NUMBER AND SIZE CONDUIT

STANDARD 45° ELBOW ONLY

NOT LESS THAN 24"

4-WIRE, 3 Ø, UG SERVICE, (ABOVE 600A), (USING CURRENT XFMR'S)

XDSP

DRAWN BY AAWC DATE 6/29/05
TRACED BY AAWC SCALE 1/8"=1'
APPROVED_________ REVISIONS 6/29/05, 7/24/07
GEORGIA POWER COMPANY
SECTION 18.10
18.11 4-WIRE, 3-PHASE, CT INSTALLATION, (ABOVE 600A), (CUSTOMER OWNED POLE)
18.12 4-WIRE, 3-PHASE, FARM SERVICE POLE, (ABOVE 225A)

4-WIRE, 3-PHASE, FARM SERVICE POLE, (ABOVE 225A)
4-WIRE, 3-PHASE, MOUNTING OF METER CABINET ON (CUSTOMER OWNED POLE)

NOTE:
1. CABINET SHOWN. SAME PROVISIONS APPLY TO ALL CABINET AND SOCKETS PROVIDED BY COMPANY.

SIDE
FRONT

XDSF

DRAWTEN BY: A.A.W.C. DATE: 4/1/06
REVISIONS: 2/22/08, 12/05/05
SECTION 18.13

© 2007 Southern Company. All Rights Reserved.
18.14 METER COMPARTMENT IN SWITCH GEAR, (CUSTOMER OWNED FACILITIES)

A. General Notes:

1. Metering compartment shall be constructed to separate and permanently barrier line and load conductors. Refer to Section 9.F, Item #7.

2. Compartment must provide control cable connections for each phase, neutral and the grounding conductors. Buss connections shall be a ¼”x20 course thread female tap.

3. Instrument transformers shall be supplied by the Company and installed by Customer.

4. All possible access doors and panels shall be secured with wing nut and threaded post drilled for wire seals.

5. A hinged and sealable lockable door shall be provided.

6. 1-1/2” schedule 40 PVC, trade size threaded rigid or intermediate metal conduit for control cable shall be furnished and installed by Customer.

7. A maximum of two 90 degree bends or sweeps is allowed in each run of conduit.

8. The metering compartment shall not be less than 24” and not more that 72” from floor level to the center of the compartment.

9. Where instrument transformers are to be located in the Customer’s switchgear, they shall be installed by the switchgear manufacturer at the Customer’s expense. Such instrument transformers shall be installed AHEAD OF ALL LOAD and in a separate compartment of the switchgear for each service. Each compartment shall be equipped with a hinged, sealable door and shall be located such that metering personnel will have clear and unobstructed access to the instrument transformers. The Customer is responsible for the shipping instructions along with a one-line diagram showing the location of the instrument transformers within the switchgear shall be sent to the GPC Metering Services Engineering Section.

B. Mounting:

1. The metering cabinet shall be mounted securely and in a workman like manner on an adjacent wall immediately accessible and visible from the switch gear.

2. Conduits shall be grounded to the Customer’s grounding system and grounded completely from the gear to the cabinets.

3. Conduit ends shall be equipped with proper bushing to protect conductors.

C. Connections:

1. All electrical connections to metering equipment shall be made by a qualified employee.
NOTES: ** SEE SECTION 9.0 PAR F,8,9 FOR FURTHER INFORMATION**
1. METERING COMPARTMENT MUST BE SEPARATE AND SECURE.
2. ONLY LINE SIDE BUS BARS OR CONDUCTORS MAY BE CONTAINED IN METERING COMPARTMENT
3. METERING COMPARTMENT WILL BE SUPPLIED BY CUSTOMER.
4. INSTRUMENTS TRANSFORMER OR PT'S WILL BE SUPPLIED BY CO. AND INSTALLED BY CUSTOMER.
5. ALL POTENTIAL, NEUTRAL AND GROUNDING CONNECTIONS SHALL BE PROVIDED INSIDE METERING COMPARTMENT.
6. HINGED LOCKABLE DOOR.
7. THREADED POST WITH WING NUTS DRILLED FOR WIRE SEALS.
19.0 PRIMARY METERING DRAWINGS
19.1 4 WIRE, 3 PHASE, PRIMARY METERING CUBICLE

ONE LINE DIAGRAMS

SHOWN: (6) 1000 MCM - LINE SIDE
(6) 1/0 AWM-J - LOAD SIDE

NOTE:
CUBICLE CAN BE ORDERED IN 200 OR 800 AMPS.

PRIMARY METERING CUBICLE

XDSF

DRAWN BY A.A.M.B. DATE 4/1/06
TRACED BY A.A.M.B. SCALE 1/12
APPROVED

GEORGIA POWER COMPANY

SECTION 19.1
19.2 STANDARD PAD FOR PRIMARY METERING CUBICLE

NOTES:
1. REINFORCE WITH #4 BARS WITH 12" GRID BELOW TOP OF PAD.
2. CONCRETE SHALL HAVE A MINIMUM ULTIMATE 28 DAYS COMPRESSIVE STRENGTH OF NOT LESS THAN 3,000 POUNDS. PAD SHALL BE CURED NOT LESS THAN 72 HOURS.
3. AVERAGE WEIGHT OF P-94 PAD IS 4,850 LBS.
4. MANUFACTURER’S NAME/LOGO TO BE PERMANENTLY AFFIXED TO PAD.

P-94 PAD FOR MC-20000 3Ø PRIMARY CUBICLE

P-93 PAD FOR MC-10000 1Ø PRIMARY CUBICLE
19.3 1-PHASE, 12-25KV, OH TO UD, PRIMARY METERING CLUSTER

SEE "DISTRIBUTION CONSTRUCTION STANDARD" FOR POLE – TOP FUSE AND BY-PASS CONSTRUCTION

NOTES
1. CONNECT PRIMARY NEUTRAL DIRECTLY TO SYSTEM NEUTRAL, NOT TO POLE GROUND.
2. MOUNTING BRACKET SHALL BE WOUND WITH #6 GROUND WIRE.

SECTION A–A

12–25KV SINGLE PHASE OVERHEAD TO SINGLE PHASE PRIMARY METERING

UNDERGROUND TERMINATION POLE

LOAD

TO METER

TO SYSTEM NEUTRAL
SEE NOTE #7

W–13570

C–7000

4" FLEXIBLE CONDUIT

48"

18"

18"

48"

48"

SECTION 19.3

DRAWN BY: [SIGNATURE] DATE: 02/17/04
TRACED BY: [SIGNATURE] SCALE: N/A
APPROVED: [SIGNATURE] REVISIONS: 02/22/07

GEORGIA POWER COMPANY

BlueBook 2007 – Revision Date: June 04, 2007
© 2007 Southern Company. All Rights Reserved.
19.5

SEE "DISTRIBUTION CONSTRUCTION STANDARD"
FOR POLE - TOP FUSE AND BY-PASS CONSTRUCTION

NOTES
1. CONNECT V.I. PRIMARY NEUTRAL DIRECTLY
 TO SYSTEM NEUTRAL, NOT TO POLE GROUND.
2. MOUNTING BRACKET SHALL BE
 GROUNDED TO POLE GROUND
 WITH #6 GROUND WIRE W-8300

TO METER
FRONT VIEW

SECTION A-A

TO METER
SIDE VIEW

FOUR WIRE-THREE PHASE PRIMARY OVERHEAD TO OVERHEAD
METERING CLUSTER MOUNT INSTALLATION

W-8300 TO POLE GROUND

1/2" FLEXIBLE CONDUIT

C-7900

TO SYSTEM NEUTRAL
SEE NOTE #1
(TYPICAL OF 3)
19.6 4 WIRE 3 PHASE OH TO OH PRIMARY METERING CLUSTER WITH PKR SWITCH

[DRAWING REMOVED]

PLEASE REFER TO THE:

SOCO/GPC
“OVERHEAD DISTRIBUTION CONSTRUCTION STANDARD”
“LINEMAN EDITION”

FOR THE LATEST POLE TOP
BY-PASS C OR FUSE CONSTRUCTION
STANDARDS AND SPECIFICATIONS
ALL PHASE TO PHASE AND PHASE TO GROUND CLEARANCES SHALL COMPLY WITH NEC, NESC, & UL STANDARD REQUIREMENTS

DETAILS

- Door is to be hinged with (2) sealing studs and wing nuts at corners opposite hinge.
- Line side phase connectors for overhead feed.
- Current transformers size may vary for CT ratio.
- 1" PVC conduit to be run between VT and CT to tee.
- 1-1/2" PVC conduit from tee to meter cabinet.
- Handle to be designed to accept padlock (typical).
- Neutral (grounded conductor) connection for 4 wire system.
- Grounding conductor connector.

__SCHEDULE 40 PVC CONDUIT FOR PROTECTION OF #6 SXL SOCU RISER LEAD__

__NOTE__

These are not construction drawings.

Copyright 2007 Southern Company. All Rights Reserved.
19.9 PRIMARY METERING IN CUSTOMER OWNED SWITCHGEAR (B)
20.0 REVISION CHANGES TO BLUEBOOK DOCUMENT

1. BLUEBOOK 2007

(a) The following Sections outline changes that have been made to the BlueBook since BlueBook 2004 was published.

(b) All of the many requests, comments and suggestions for proposed changes to BlueBook 2004 that were received by the committee have been considered for inclusion into BlueBook 2007.

(c) You are invited to submit recommendations for revisions to BlueBook 2007. Please include complete information about the proposed change, the reason(s) for the proposed change, and an address or telephone number where you can be contacted in case of questions. The committee prefers that you send an e-mail to the following e-mail address.

For proposed changes, please submit via email to:

gpcbluebook@southernco.com

Or you may contact:

Georgia Power Company
Metering Services Department
62 Lake Mirror Rd, Bldg. 2C, BIN 50023
Forest Park, Georgia 30297-1691
Toll Free: 1-800-831-0629
Phone: 404-608-5151
21.0 **APPENDIX A: REVISIONS TO THE BLUEBOOK -INCLUDED IN BLUE BOOK 2007)**

1.0) **Page 2**

1. Web Page

Changes were made to the Book to reflect new web page address.

FOR THE LATEST REVISION TO THE BLUE BOOK
PLEASE VISIT:
www.georgiapower.com/builder

Applications for Service:
Customer Care Center
Builders Line 1-877-365-3276
www.georgiapower.com/builder
Residential Needs 1-888-660-5890
Business Needs 1-888-655-5888

Outage Reporting:
1-888-891-0938

2.0) **Page 3**

Changes were made to include Blue Book email address for change recommendations.

You are invited to submit recommendations for revisions to this book. Please include complete information about the proposed change, the reason(s) for the proposed change, and an address or telephone number where you can be contacted in case of questions.

For proposed changes, please submit via email at
GPCBlueBook@southernco.com.

Or contact:

Georgia Power Company
Metering Services Department
62 Lake Mirror Rd, Bldg. 2C, Bin 50023
Forest Park, Georgia 30297-1691
Toll Free: 1-800-831-0629
Phone: 404-608-5151
Fax: 404-608-5475

3.0) **Table of Contents**

Added reference to new Drawing 14.1 to Table of Contents

Added hyperlink to Table of Contents for New Drawing 14.1 “Residential Distributed Generation”

4.0) **Section 6.0**

4.1) **6.0 A, 3**
Added new wording to end of this paragraph to state no coupling are allowed in conduit at the building soffit, enclosed fascia or in mast above roof line.

“At the point that the service mast conduit passes upward through a roof overhang, at its soffit or through any enclosed fascia area, the service mast conduit shall be one continuous section, with no conduit couplings. All couplings used below the roof overhang or fascia shall be visible in the service mast conduit. No conduit coupling shall be a part of the service mast conduit at any point above the roofline of the building.”

4.2) 6.0 A, 9

Added additional drawing references to end of sentence and show proper location for “C” phase:

For proper metering of 4-Wire, 3-Phase, delta service the phase having the highest voltage to ground (high leg) must be in the right hand or "C" phase position in the meter socket. To insure proper connections, the (high leg) must be plainly marked at the weather head. See Section 16.2, 16.3, 16.4, 18.2, 18.3, 18.4, and 18.6.

4.3) 6.0 A, 10

Added New Metering Options For Multilevel Residential Buildings

Section A, 10.
For multi-level residential premises the following options apply:

Removed the wording “with polyphase service voltages, Service laterals, conduits and accessories shall be furnished and installed by the Customer and shall remain the property of the Customer. The final connection of Customer service entrance conductors will be made at the transformer by the Company. Company metering shall be located at one level only.”

Add provide options to end of sentence A.10 pertaining to overhead multi-level premises metering.

4. The preferred method is for Company owned metering equipment to be located at one level for all residential units, installed as described in Section 9.0 of the latest edition of the G.P.C. Electrical Service And Metering Installations Blue Book.
5. An alternate method (as approved by the local Metering Services Field Supervisor) is for one “master” meter to be installed in a switchgear, current transformer cabinet or at an underground pad-mounted transformer as described in Section 6.0 and, or Section 9.0.
6. An alternate method (as approved by the local Metering Services Field Supervisor) is for multi-level multi unit metering where the following conditions apply.
 (a) An up-front contribution in aid for remotely read metering installation expenses is made to off set GPC additional costs.
 (b) A Master Meter (to be used as a NON BILLING MEMO METER for audits and security verifications) is installed as described in option # 2 in this document.
 (c) A separate fire pump meter is installed.
(d) All meter equipment installations and locations satisfy the requirements as described in Section 6.0 and or Section 9.0 of the G.P.C. Electrical Service And Metering Installations Blue Book.

(e) A written understanding of expectations and agreements is provided to the local Metering Services Field Supervisor before construction begins.

4.4) 6.0 B, 8

Clarified statement on proper installation of instrument transformers inside padmount transformers.

Only one meter installation shall be allowed inside a padmount transformer. **If metering inside a padmount transformer, the transformer can only serve one customer.** Meter sockets shall not be mounted in or on padmount transformers. **Instrument transformers shall not be used on a single phase padmount transformer.** For 3-Phase services over 225 amps see transocket installation in Section 18.1. **Instrument transformers shall not be placed in a padmount transformer less than 150 kva for 208Y/120 or less than 300 kva for 480Y/277.**

4.5) 6.0 B, 9

Reworked Section to provide options for multilevel premise

B.9. For multi-level residential premises **the following options apply:**

Remove the wording “with polyphase service voltages, Service laterals, conduits and accessories shall be furnished and installed by the Customer and shall remain the property of the Customer. The final connection of Customer service entrance conductors will be made at the transformer by the Company. Company metering shall be located at one level only.”

To provide options to end of sentence B.9 pertaining to underground multi-level premises metering.

1. The preferred method is for Company owned metering equipment to be located at one level for all residential units, installed as described in Section 9.0 of the latest edition of the G.P.C. Electrical Service And Metering Installations Blue Book.

2. An alternate method (as approved by the local Metering Services Field Supervisor) is for one “master” meter to be installed in a switchgear, current transformer cabinet or at an underground pad-mounted transformer as described in Section 6.0 and, or Section 9.0.

3. An alternate method (as approved by the local Metering Services Field Supervisor) is for multi-level multi unit metering where the following conditions apply.
 a. An up-front contribution in aid for remotely read metering installation expenses in made to off set GPC additional costs.
 b. A Master Meter (to be used as a NON BILLING MEMO METER for audits and security verifications) is installed as described in option # 2 in this document.
 c. A separate fire pump meter is installed.
d. All meter equipment installations and locations satisfy the requirements as described in Section 6.0 and Section 9.0 of the G.P.C. Electrical Service And Metering Installations Blue Book.

e. A written understanding of expectations and agreements is provided to the local Metering Services Field Supervisor before construction begins.

5.0) Section 9.0

5.1) Sec. 9.0 A, 5

Above paragraph has since been deleted from document and recreated in Section 12.0

5.3) Sec. 9.0 B, 5

Added wording “enamel paint” to Sec. 9.0 B, 5.

To avoid delays in providing service to multi-unit buildings (apartments, condominiums, or commercial) both the unit and meter socket position must be labeled on both the inside and outside (See Sections 15.10, 15.11, 15.16, 15.17, 15.27, 18.4, 18.5, and 18.6) surfaces with permanent letters and/or numbers in enamel paint at least 1” in height of contrasting color.

Added wording “enamel paint” to 15.10 D, 1, 15.11 D, 1, 15.16 E, 1, 15.17 E, 1, 15.27 Drawing, 18.4 C, 1, 18.5 D, 1, 18.6 C, 1.

5.4) Sec. 9.0 C, 1

Removed Paragraph C, 1 (2004) from this section – (This statement did not apply to metering equipment locations per se and is covered in Section 12.0 (2007).

“All metering equipment shall be located, (installed), in such a way that conductive parts of the equipment are grounded effectively as required by the National Electrical Code. For grounding considerations see Sections 250-2, 250-134, 250-142(b) Exception 2 and 250-32. Metering load side equipment with self-contained meter sockets or the Transocket is prohibited without special permission of a qualified employee and configuring the isolation of the neutral conductor from the equipment ground. It is the responsibility of the customer to coordinate a joint agreement between the AHJ, (Authority Having Jurisdiction), and the Company for deviation before the installation of metering equipment is underway for load side equipment.”

Added the word “jail” to list of locations with restricted areas where meters are not allowed.

2. Meters and associated metering equipment shall not be located in the restricted area of any prison, jail, penitentiary, detention center or any facility which restricts reasonable access. Primary metering is the preferred method for these facilities.

Corrected the word “readily”, bolded the “r” in the word readily.

5. Metering equipment shall be located where it is readily accessible to Company employees. Refer to readily accessible definition in Section 2. “If metering equipment is to be located behind a locked door, the lock shall be keyed for a Georgia Power Meter Room key.”

Clarified location for metering equipment in confined spaces, in close proximity to gas meters, appliance, etc.

10. Metering equipment shall not be installed in a meter room, closet or any confined space with gas meters or appliances. Outside metering equipment shall not be installed within 3’ of gas meters or gas appliances.

5.9) Section 9.0 D, (2004) added paragraph D, 3

Created a new paragraph as 9.0 Section D as par. 3 (2007)

3. Where service is 480Y/277 volts a load side disconnect shall be installed immediately adjacent to meter socket. The disconnect must be rated not less than the load to be carried and must have an interrupting rating at system voltage sufficient for the current that must be interrupted. The disconnect shall accept a Company lock in the off position.

5.10) Sec. 9.0 E, 1, (a)

Added New additional requirements for internal construction of customer owned meter socket.

“Customer purchased equipment shall be UL listed. The label, symbol or other identifying mark used by the testing laboratory shall be affixed to the unit. “As of 5/1/07, if single phase, unit must meet minimum construction requirements as shown in drawings 15.8.1 and 15.8.2.”

5.11) Sec. 9.0 E, 1, (f)

Change was made to show the Company does not allow 4w 3ph Class 320 service.
f. The following requirements shall apply to customer owned sockets.
 1) All meter spade jaws on residential customer owned sockets shall be spring reinforced and rated at no less than 200 amps.
 2) All 200 amp 4-Wire 3-phase self-contained and 320 amp 3-Wire 1-phase self-contained meter sockets shall be equipped with a by-pass handle. 4w 3ph Class 320 self contained services are not allowed by the company.
 3) All sockets used on commercial applications shall have a by-pass handle.

5.12) Sec. 9.0 E, 1 (k)

Change was made to clarify a separate compartment for line side termination on multi gang meter centers.

Multi-position, Customer owned, meter center shall be constructed so the dedicated line side wiring compartment is separate from breakers, disconnects, and compartments housing service equipment or meter sockets and is accessible without having to remove any meter(s). Each meter position's cover shall be removable without having to remove any other cover(s). Each meter position shall have a lockable load side disconnect for the Company’s use.

5.13) Sec. 9.0 E, 1 (k)

Change was made to require that multi-position sockets and meter centers used on commercial shall have by-pass handles. Also show that 208Y/120 3w 1ph volt services are to have fifth terminals.

1. All multi-position meter sockets and meter centers used on commercial applications shall have a by-pass handle.

2. If the Customer furnishes multi-position meter centers or single position meter sockets and the supply source is 208Y/120 3-Wire 1-Phase service the Customer shall furnish and install a grounded fifth terminal mounted in the (9 o’clock position) in each socket.

3. If the Customer combines the load in a multi-position meter center to be metered by current transformers as one load, all of the conductors shall originate from a common point, either a buss connection or one disconnect, before they pass through the current transformers. Individual disconnects shall not be allowed before the current transformers.

5.14) Section 9.0 E, 2 (a) (b) (c) (2004)

Moved paragraph to become Section 9.0 I (2007)

Move to end of 9.0 to become Section I. Title section “Guidelines for 480Y/277 volt installation.”

5.15) Section 9.0 F, 1 & F, 2

Change was made to reflect Single Phase service and Three Phase service metering requirements.
1. **On Single Phase service:** Where the service ampacity rating is greater than 225 amperes, but not over 400 amperes, a self contained class 320 ampere meter socket furnished by the Company shall be used on 1-Phase 120/240 or 120/208 volt service. When the service ampacity rating is greater than 400 amperes, **but not exceeding 600 amperes, the preferred method of metering is a transocket.** When the service ampacity is greater than **600 amperes, current transformers** shall be used.

2. **On 3 Phase service:** When service ampacity is greater than 225 amperes and less than 600 amperes, the preferred method of metering is a transocket. **The 3-Phase transocket is provided with a 600 MCM dual rated two port non-rotational connector on line and load side of the transocket.** When the wire size to be used is larger than the capacity of the connectors provided by the Company, a current transformer installation shall be used rather than the transocket. When the service ampacity is greater than 600 amperes, current transformers shall be used. **4w 3ph Class 320 amp self contained services are not allowed by the Company.**

5.16) **Section 9.0 F, 3**

Change was made to sentence Section 9.0 F,3 (2004).

Remove sentence “regardless of the number of customers.”
Remove “metered” from 2nd statement.

“All one meter installation shall be allowed inside a padmount transformer. If metering inside a padmount transformer, all load must be for one customer and metered with one set of current transformers.”

5.17) **Section 9.0 F, 5**

Change was made to reflect type of conduit, knock outs, and list overhead and underground references

5. The **Customer** shall furnish and install a **trade size** 1-1/2” schedule 40 PVC, threaded rigid or intermediate metal conduit into the available knockouts of the meter socket test switch enclosure. No conduit shall enter through the top or back of the meter enclosure. All meter control cable access points shall remain readily accessible.

a. **Overhead:** Refer to Sections 18.7, 18.8, 18.11 and 18.12.

b. **Underground:** Refer to Sections 18.5 and 18.9.

5.18) **Section 9.0 F, 6**

Minor changes were made to paragraph wording to clarify statement.

Added “Metal” to the last 2 sentences.
Changed “grounding” to “bonding”.
Changed “and joints” to “**ends**”.
Removed “for grounding purposes” from the end of the 4th sentence.
Add “Each end of” to last sentence.
Changed “ends” to “runs” in the last sentence.
New Statement 9.0 F, 6 (2007)

6. The maximum allowable distance from the meter socket to the instrument transformers is 50’. A maximum of two 90 degree bends or sweeps are allowed in each run of conduit. All conduit ends shall be reamed to protect the meter control cable. All metal conduit ends shall be threaded. Each end of metal conduit runs shall be equipped with a bonding bushing.

5.19) Section 9.0 F, 8 & F, 9

Changed reference to reflect customer or contractor should send one line diagrams and shipping instructions to Meter Engineering Section.

Change from Metering Services Section to GPC Metering Services Engineering Section.

5.20) Section 9.0 F, 10

Changes were made to better clarify this statement.

New Statement 9.0 F, 10 (2007)

“Where multiple customers can be served by a common distribution point, all customers metered with instrument transformers shall be required to provide a load side disconnecting means that is readily accessible to the Company. The disconnecting means shall accept a Company lock. The purpose of the disconnecting means is to enable the Company to disconnect and reconnect service to these customers without interruption of service to other customers served from the same service source. Refer to Section 18.4 and 18.5 for some examples.”

5.21) Section 9.0 G, 2 (c)

A change was made to the document to show that mobile home pedestals must be manufactured by an approved manufacturer and have approval of Metering Services before being installed.

Added new sentence to read (2007):

(c) Meter pedestals must be manufactured by an approved manufacturer. Meter pedestals must be approved by the Metering Services Department before the meter pedestals are installed. The Company does not assume ownership of meter pedestals and is not responsible for maintenance.

5.22) Section 9.0, H New Section Added

5.23) Section 9.0, H was added to refer to Town Home Metering Installations

H. Town Home Meter Installation

Two options are allowed:
1. Gang Metering and Customer Owned Meter Centers Ganged meter sockets and customer owned meter centers shall be mounted on the side of the building, on a pedestal just off the building, or in a kiosk. Customer conduit and conductors (either feeder conductors or service-entrance conductors, underground system) to each townhouse panelboard shall be installed according the National Electrical Code (NEC). Developer will file a private easement with the county for the customer owned conduit and service cable and conductors before construction will begin where applicable. This easement shall also include permission to install any customer owned service equipment or any associated gang metering equipment, especially if this electrical equipment is mounted directly on the building wall. If not mounted on the building, the metering equipment shall be mounted on a durable structure consisting of 6” galvanized channel iron or masonry substance of similar strength located in a common space of the association.

2. Service in the Front
Individual meter sockets shall be mounted on the front of each of the dwellings for service. Any installation must be approved before the project begins by a local qualified employee. In all installations unrestricted access to metering equipment and service conductors is required at all times.

5.24) Section 9.0, I Guidelines for 480Y/277 Volt Installations
New Section 9.0 I created to reference Guidelines for 480Y/277 volt services. (Was found under 9.0 E, 2) (2004)

Section 9.0 E-2 a,b,c were out of order with the sections they were previously attached to.

Created new Section 9.0 I titled Guidelines for 480Y/277 volt installations

I. Guidelines for 480Y/277 volt installations
1. Where service is 480Y/277 volts, metering shall be to the following specifications:

(a) Services over 225 amperes shall be metered with instrument transformers.

(b) Services 226 amps through 600 amps shall be metered with a transocket when possible.

(c) Services 225 amperes or less shall have a load side disconnect immediately adjacent to meter socket. The disconnect must be rated not less than the load to be carried and must have an interrupting rating at system voltage sufficient for the current that must be interrupted. The disconnect shall accept a Company lock in the off position.

6.0) Section 12.0

Title of this Section has been changed to “Bonding & Grounding of Meter Equipment” (2007)

6.2) New Section 12.0 Reads:
Section 12.0 Bonding & Grounding of Meter Equipment

To assure the practical safeguarding of persons and property, the Customer shall install and ground a wiring system in accordance with the National Electrical Code and local codes before requesting the Company to energize the service. Failure to comply with the appropriate codes may result in personal injury or damage to property.

Georgia Power Company will not terminate service laterals directly to customer owned breaker or disconnect. Contractor shall provide dedicated line side terminating lugs with N.E.M.A. spaced studs. (Refer to section 15.18).

A. Bonding Supply-Side Metering Equipment:

6. General: Non-current carrying metal parts of meter sockets, instrument transformer cabinets and transockets shall be bonded to the service grounded (neutral) conductor in a manner that establishes an effective ground-fault current path. In all cases where the metering equipment is on the supply-side of the service disconnect, the metal enclosure shall be bonded to the grounded (neutral) conductor within the enclosure. No additional equipment grounding conductors (bond wires) or bonding jumpers are required to effectively bond the metal meter enclosure to adjacent service entrance equipment.

7. Self-Contained Sockets: In all three-phase and single-phase self-contained Company meter sockets, the neutral connector is bonded to the metal enclosure by design. No additional equipment grounding conductors (bond wires) or bonding jumpers are required nor shall any be allowed to attach to or pass through supply-side self-contained meter sockets.

8. Transsockets: In all Company transsockets, the neutral bus is bonded to the metal enclosure by a bonding strap installed at the factory. No additional equipment grounding conductors (bond wires) or bonding jumpers are required nor shall any be allowed to attach to or pass through supply-side transsockets.

9. Current Transformer Cabinets: Company personnel will bond all Current Transformer cabinets on the supply-side of the service disconnect by attaching a bonding jumper to the grounded (neutral) conductor and to the grounding connector in the bottom left corner of the cabinet. No additional equipment grounding conductors (bond wires) or bonding jumpers are required nor shall any be allowed to attach to or pass through supply-side Current Transformer cabinets.

10. Transformer-Rated Sockets: All transformer-rated meter sockets and metallic conduits for meter control cable shall be bonded to the grounded (neutral) conductor by Company personnel.

B. Bonding Load-Side Metering Equipment

6. General: Non-current carrying metal parts of meter sockets, instrument transformer cabinets and transockets shall be bonded to the service grounded (neutral) conductor in a manner that establishes an effective ground-fault current path. Where meter equipment is on the load-side of a service disconnect that does not have equipment ground-fault protection and where the meter equipment is adjacent to the service
disconnect (within 30 feet), the metal meter enclosure shall be bonded to the grounded (neutral) conductor within the enclosure. No additional equipment grounding conductors (bond wires) or bonding jumpers are required to effectively bond load-side meter enclosures where there is no equipment ground-fault protection and where the meter enclosure is adjacent to the service disconnect (within 30 feet). Where load-side metering equipment is on the load-side of equipment ground-fault protection or where load-side metering equipment is not adjacent to the service disconnect (not within 30 feet), it is the responsibility of the Customer to coordinate a joint agreement between the AHJ (Authority Having Jurisdiction) and the Company for the proper isolation of the equipment grounding conductor and the service grounded (neutral) conductor within the meter enclosure.

7. Self-Contained Sockets: In all three-phase and single-phase self-contained Company meter sockets, the neutral connector is bonded to the metal enclosure by design. A single-phase 200 amp self-contained socket (with bypass handle) is available with a removable bonding strap. A kit is also available from the Company for isolating the neutral conductor from the metal enclosure on four-wire three-phase self-contained 200 amp meter sockets. This will allow these sockets to be bonded by the Customer’s equipment grounding conductor (bond wire) when the socket is on the load-side of equipment ground-fault protection or when the socket is on the load-side of a service disconnect and not adjacent to the disconnect (not within 30 feet). To prevent parallel neutral paths (objectionable current), a meter socket shall not be bonded internally to the grounded (neutral) conductor and also to the Customer’s equipment grounding conductor (bond wire).

8. Transockets: In all Company transockets, the neutral bus is bonded to the metal enclosure by a bonding strap installed at the factory. This bonding strap is designed to be removable to allow the transocket enclosure to be bonded by the Customer’s equipment grounding conductor (bond wire) when the transocket is on the load-side of equipment ground-fault protection or when the transocket is on the load-side of a service disconnect and not adjacent to the disconnect (not within 30 feet). To prevent parallel neutral paths (objectionable current), a transocket shall not be bonded internally to the grounded (neutral) conductor and also to the Customer’s equipment grounding conductor (bond wire).

9. Current Transformer Cabinets: Where Current Transformer cabinets are located on the load-side of a service disconnect that does not have equipment ground-fault protection and where the cabinet is adjacent to the service disconnect (within 30 feet), Company personnel will bond the cabinet by attaching a bonding jumper to the grounded (neutral) conductor and to the grounding connector in the bottom left corner of the cabinet. Where a load-side Current Transformer cabinet is on the load-side of equipment ground-fault protection or where the load-side cabinet is not adjacent to the service disconnect (not within 30 feet), the Current Transformer cabinet shall be bonded by the Customer’s equipment grounding conductor. To prevent parallel neutral paths (objectionable current), a Current Transformer cabinet shall not be bonded internally to the grounded (neutral) conductor and also to the Customer’s equipment grounding conductor (bond wire).

10. Transformer-Rated Sockets: All transformer-rated meter sockets and metallic conduits for meter control cable shall be bonded to the grounded (neutral) conductor by Company personnel.
C. Grounding of Meter Equipment

5. General: To facilitate meeting NEC grounding requirements, the Company will allow a single grounding electrode conductor to be terminated in a self-contained meter socket or a transocket where a factory installed grounding connector is attached to the neutral bus. The grounding electrode conductor shall be routed straight to the grounding electrode without passing through any other enclosure. The meter enclosure shall not be used as a junction point for bonding together different components of the Customer’s grounding electrode system.

6. Self-Contained Meter Sockets: A grounding connector is attached to the neutral bus in Company self-contained three-phase and single-phase meter sockets. A single grounding electrode conductor may be attached in this connector to meet NEC grounding requirements. This connector shall not be used for bonding (equipment grounding conductors). Additional grounding connectors shall not be attached to Company sockets.

7. Transockets: A grounding connector is attached to the neutral bus in Company transockets. A single grounding electrode conductor may be attached in this connector to meet NEC grounding requirements. This connector shall not be used for bonding (equipment grounding conductors). Additional grounding connectors shall not be attached to Company transockets.

8. Current Transformer Cabinets: Current Transformer cabinets shall not be used as the point of connection for system grounding. The cabinets are not equipped with a grounding connector that is permanently attached to the grounded (neutral) conductor since this conductor passes straight through the cabinet. The connector in the bottom left corner of the cabinet is for bonding purposes only. No additional connectors shall be attached to Current Transformer cabinets for grounding purposes.

D. External Ground Wires Attached to Meter Equipment

3. Company meter equipment shall not be used as a point of grounding by the Customer or other utilities. Ground wires for cable TV, antennas, phone equipment, etc. shall not connect to meter sockets, meter cabinets, Current Transformer cabinets or metal conduits housing meter control cable.

4. Any ground wire as described in paragraph # 1 above that interferes with Company personnel accessing the meter or that in any way creates a hazard for Company personnel will be subject to removal by Company personnel.

6.3) New Section 12.1 (2007)

Added new section and sentence 1.

12.1 Service Equipment with High Impedance Grounding Systems

“1. In meter installations of high resistance grounding applications please contact the local meter supervision for approved methods.”
Corrected alignment of this section with heading. (2007)

6.5) Section 14.0

STANDBY AND PARALLEL GENERATORS

Reworded Paragraph 2 to refer to Distribution 18-08 and drawing Section 14.1

6.6) 14.0 – paragraph 1, (b) 2007)

(b). Generators designed to run parallel with the Company’s system require special protective devices. It is essential the Customer consult the Company regarding these protective requirements before installing or attempting to operate parallel generators. Refer to Distribution Bulletin 18-08 Parallel Operation of Customer Generation, Contact a qualified employee for a copy of this reference. For metering Residential Distributed Generation refer to Drawing 14.1.

6.7) Add new paragraph 1, (c) (2007).

(c) Refer to Distribution Bulletin 18-17 Installation of Optional Standby System (Backup) Generator for Type I (System using a main panel and a generator) and Type II (System using a standby power kit installed in an outside combination meter-main) generator installations. Contact a qualified employee for a copy of this reference.

7.0) Section 15.0

7.1) 15.10 D, 1

Show marking of sockets positions should be in enamel paint.

1. Each socket position and the corresponding building unit served (suite, apartment or office) shall be accurately, clearly and permanently marked with enamel paint before meters are installed.

7.2) Section 15.11 C, 2 & C, 3

Reworded to separate proper connection of Company furnished socket from Customer owned socket requirements.

2. Company will wire brush all line side connections in Company furnished sockets, install compression connectors to line conductors, apply nongrit type inhibitor to the line side bus (as illustrated), terminate by torquing to 200-inch lbs. Torque will be checked on load connectors.

3. On Customer owned meter sockets all line side (including neutral) connectors for use in these devices shall be either NEMA spaced studs for compression connectors or ball point, set screws, lay-in type or shall be removable porthole type with anti-rotation feature and shall be rated for conductor sizes #4 through 250 MCM (line) and #4
through 350 MCM (neutral). Recommended connector torque shall be clearly labeled inside the socket.

7.3) 15.11 D, 1

Showed sockets are to be marked with enamel paint.

1. Each socket position and the corresponding building unit served (suite, apartment or office) shall be accurately, clearly and permanently marked with enamel paint before meters are installed.

7.4) 15.16 E, 1

Showed sockets are to be marked with enamel paint.

1. Each socket position and the corresponding building unit served (suite, apartment, or office) shall be accurately, clearly and permanently marked with enamel paint before meters are installed as specified in Section 9.C.

7.5) 15.17 E, 1

Showed sockets are to be marked with enamel paint.

1. Each socket position and the corresponding building unit served (suite, apartment, or office) shall be accurately, clearly and permanently marked with enamel paint before meters are installed as specified in Section 9.C.

8.0) Section 18.0

New drawing of 4w 3ph U.G. service using current transformers added.

8.1) 18.2, A

Added new sentence under “A” General Notes as additional sentence 5 stating

5. “On delta service the phase having the highest voltage to ground (high leg) shall be in the right hand or "C" phase position in the transocket. (2007)”

8.2) 18.3, A

Added new sentence under “A” General Notes as additional sentence 5 stating

5. “On delta service the phase having the highest voltage to ground (high leg) shall be in the right hand or "C" phase position in the transocket.”

8.3) 18.4 A

Added new sentence under “A” General Notes as additional sentence 6 stating

6. “On delta service the phase having the highest voltage to ground (high leg) shall be in the right hand or "C" phase position in the transocket.”
8.4) 18.4 C, 1

Shows sockets are to be marked with enamel paint.

1. Each socket position and the corresponding building unit served (suite, apartment or office) shall be accurately, clearly and permanently labeled with enamel paint before meters are installed. (2007)

8.5) 18.5 D, 1

Shows sockets are to be marked with enamel paint.

1. Each socket position and the corresponding building unit served (suite, apartment or office) shall be accurately, clearly and permanently labeled with enamel paint before meters are installed. (2007)

8.6) 18.6, A

Added shall to reference under “A” General Notes to each location as additional sentence stating

“On delta service the phase having the highest voltage to ground (high leg) shall be in the right hand or "C" phase position in the transocket.” (2007)

8.7) 18.6 C, 1

Showed sockets are to be marked with enamel paint.

1. Each socket position and the corresponding building unit served (suite, apartment or office) shall be accurately, clearly and permanently labeled with enamel paint before meters are installed. (2007)

8.8) Section 23.0

Added new special purpose meter socket M-2652 STEL S/C 4W 3PH W/BYP ISL NTRL (Isolated Neutral) to chart.

8.9) Section 24.0

Added Section 24.0 Meter and Socket Selection Chart

Add chart (R-TNG-033) Meter and Socket Selection Chart as Section 24
1.0) **Section 6.0**

Drawing 6.1

New Drawing and notes.

2.0) **Section 14.0**

Add Drawing 14.1

Added new drawing 14.1 “Distributed Generation- Residential”.

3.0) **Section 15.0**

3.1) 15.1 (Drawing)

(G) Removed: 15.1 G, NOTE

“NOTE: This does not apply to multiplex cables above the top level of a window or a window designed not to open.” (2004)

Added statement: “The point of attachment and or the point of connection for service conductors shall not be less than 8 feet above any window.” (2007)

3.2) 15.2 (Drawing)

Changes made on notes for Roof Clearance

Roof Clearances

A. Roof Not Readily Accessible

1.b. – For open covered conductors in excess of 300v between conductors; maintain not less than 10’ vertical clearance above all portions of the roof, porches and attached decks.

B. Roof Readily Accessible

1. – Maintain not less than 10’ vertical clearance for all service conductors above all portions of the roof, porches and attached decks.

At the mast in the drawing:

Note added to drawing to state “No coupling will be allowed in the mast conduit at the soffit or fascia or any point above the roof line”.

BlueBook 2007 – Revision Date: June 04, 2007
© 2007 Southern Company. All Rights Reserved.
3.3) 15.3 (Drawing)

Changed drawing to **show 45 degree elbow at bottom of straight run conduit below meter socket** to show on drawing with an arrow pointing to it stating “Standard 45 Degree Elbow Only”

3.4) 15.4 (Drawing)

Added wording to “Grounding Connector” to state “Grounding Electrode Connector Terminal”.

3.5) 15.5 (Drawing)

Added wording to “Grounding Connector” to state “Grounding Electrode Connector Terminal”.

3.6) 15.6 (Drawing)

Added wording to “Grounding Connector” to state “Grounding Electrode Connector Terminal”.

3.7) 15.7 (Drawing)

Added wording to “Grounding Connector” to state “Grounding Electrode Connector Terminal”.

3.8) 15.8 (Drawing)

Added statement under Note: “All sockets used on commercial applications shall have a by-pass handle.”

3.9) 15.8.1 (Added New Drawing)

Added New Drawing:

Customer Owned Meter Sockets Internal Construction Requirements
Added new drawing showing internal size requirements for over/under customer owned socket. Effective date for change in order for manufacturers to be compliant is 5/1/07.

3.10) 15.8.2 (Add New Drawing)

Added New Drawing:

Customer Owned Meter Sockets Internal Construction Requirements
Added new drawing showing internal size requirements for side by side customer owned socket. Effective date for change in order for manufacturers to be compliant is 5/1/07.

3.11) 15.9 (Drawing)
Added statement under Note: as sentence 2 “All sockets used on commercial applications shall have a by-pass handle.”

3.12) 15.12 (Drawing)

Added wording to “Grounding Connector” to state “Grounding Electrode Connector Terminal”.

Removed statement “When used for 120/208V Y service a fifth terminal meter jaw is required” from section drawing 15.12.

3.13) 15.13 (Drawing)

Added wording to “Grounding Connector” to state “Grounding Electrode Connector Terminal”.

Removed statement “When used for 120/208V Y service a fifth terminal meter jaw is required” from section drawing 15.13.

3.14) 15.14 (Drawing)

Added wording “Grounding Electrode Connector Terminal” to section drawings 15.14.

3.15) 15.15 (Drawing)

Added wording “Grounding Electrode Connector Terminal” to section drawings 15.15.

3.16) 15.16 (Drawing)

Added statement “When used for 120/208 volt Y service, a fifth terminal meter jaw is required.”

Removed statement “M-2500 socket may be used for network (3ph, 3w, 120/208 Y service).”

Added statement “Georgia Power Company will not terminate service laterals directly to customer owned breaker or fused disconnect. Contractor shall provide dedicated line side terminating lugs with N.E.M.A. spaced studs. (Refer to section 15.18).”

Added wording “Permanent” to “Unit Marking”

Added statement: “All sockets used on commercial applications shall have a by-pass handle.”

Changed drawing to show 45 degree elbow at bottom of straight run conduit below meter socket to show on drawings with an arrow pointing to it stating “Standard 45 Degree Elbow Only”
3.17) 15.17 (Drawing)

Removed statement “M-2500 socket may be used for network (3ph, 3w, 120/208 Y service).”

Removed statement “Customer to furnish fifth jaw.”

Added **Permanent** to “Unit Marking”

Added statement: **“All sockets used on commercial applications shall have a bypass handle.”**

Removed word **fused** to include all disconnects.

New Statement to read: “Georgia Power Company will not terminate service laterals directly to customer owned breaker or disconnect. Contractor shall provide dedicated line side terminating lugs with N.E.M.A. spaced studs. (Refer to section 15.18).”

Changed drawing to show 45 degree elbow at bottom of straight run conduit below meter socket to show on drawings with an arrow pointing to it stating “Standard 45 Degree Elbow Only”

3.18) 15.19 (Drawing)

Added statement as Notes 3: **“All sockets used on 208Y/120V service shall have a fifth terminal.”**

Added statement as Notes 4: **“All sockets used on commercial applications shall have a by-pass handle.”**

Changed protrusion “B” to “A” on drawing.

3.19) 15.21 (Drawing)

Changed drawing to **show 45 degree elbow at bottom of straight run conduit below meter socket** to show on drawings with an arrow pointing to it stating “Standard 45 Degree Elbow Only”

3.20) 15.22 (Drawing)

Changed drawing to **show 45 degree elbow at bottom of straight run conduit below meter socket** to show on drawings with an arrow pointing to it stating “Standard 45 Degree Elbow Only”

3.21) 15.23 (Drawing)

Changed drawing to **show 45 degree elbow at bottom of straight run conduit below meter socket** to show on drawings with an arrow pointing to it stating “Standard 45 Degree Elbow Only”
3.22) 15.27 (Drawing)

 Changed statement on drawing to read: “Mark meter socket with lot number, 1” high, of contrasting color in enamel paint”, added new note #3 “3. SEE SECTION 9.0, G, (2) FOR ADDITIONAL INFORMATION”.

4.0) Section 16.0

4.1) 16.3 (Drawing)

 Added wording to “Grounding Connector” to state “Grounding Electrode Connector Terminal”.

4.2) 16.4 (Drawing)

 Added wording to “Grounding Connector” to state “Grounding Electrode Connector Terminal”.

4.3) 16.5 (Drawing)

 Changed drawing to show 45 degree elbow at bottom of straight run conduit below meter socket to show on drawings with an arrow pointing to it stating “Standard 45 Degree Elbow Only”.

4.4) 16.6 (Drawing)

 Removed “M” from MB9506 to change number to show commodity number as B9506.

5.0) Section 17.0

5.1) 17.1 (Drawing)

 Removed statement “Cabinet shall be grounded to the customer grounded system” and add statement to state “For grounding requirements refer to Section 12.0 Bonding & Grounding of Meter Equipment.”.

 Corrected drawing to show Single Phase Service (No 4th wire) at mast. (2004)

5.2) 17.3 (Drawing)

 Removed statement “Cabinet shall be grounded to the customer grounded system” and add statement to state “For grounding requirements refer to Section 12.0 Bonding & Grounding of Meter Equipment”.

 Changed drawing to show 45 degree elbow at bottom of straight run conduit below meter socket to show on drawings with an arrow pointing to it stating “Standard 45 Degree Elbow Only”.

5.3) 17.4 (Drawing)
Revised Drawing - Cabinet Shown is an M-2090 - Commodity Number is now on drawing.

6.0) Section 18.0

6.1) 18.1 (Drawing)

Changed “grounding conductor connector” to read “grounding electrode conductor terminal”.

Revised drawing to show High Leg on Phase C.

6.2) 18.2 (Drawing)

Changed “grounding conductor connector” to read “grounding electrode conductor terminal”.

Revised Drawing to show High Leg as Phase C.

6.3) 18.3 (Drawing)

Changed “grounding conductor connector” to read “grounding electrode conductor terminal”.

At 5’6” Add “MAX” for height. Wording “Mounting Bracket Furnished “should be removed at the bottom (Duplicate Statement).

Changed drawing to show “C” Phase as on right hand side with arrow.

6.4) 18.4 (Drawing)

Removed statement “Cabinet shall be grounded to the customer grounded system” and add statement to state “For grounding requirements refer to Section 12.0 Bonding & Grounding of Meter Equipment.”

Added reference to drawing with arrow to ground terminal “grounding electrode conductor terminal”.

Changed drawing to show “C” Phase is on right hand side of transocket.

6.5) 18.6 (Drawing)

Removed statement “Cabinet shall be grounded to the customer grounded system” and added statement to state “For grounding requirements refer to Section 12.0 Bonding & Grounding of Meter Equipment.”

Added reference to drawing with arrow to ground terminal “grounding electrode conductor terminal”.

6.6) 18.7 (Drawing)
Changed drawing to show 24” maximum from CTs to 1-1/2” conduit on drawings listed.

6.7) 18.8 (Drawing)

Revised drawing to show 24” maximum from CTs to 1-1/2” conduit weatherhead.

Revised drawing - 24” shown changed to 36” maximum between straps.

6.8) 18.11 (Drawing)

Revised drawing to show 24” maximum from CTs to 1-1/2” conduit weatherhead.

6.9) 18.12 (Drawing)

Revised drawing to show 24” maximum from CTs to 1-1/2” conduit weatherhead.

7.0) Section 19.0

7.1) 19.1 (Drawing)

Amended drawing to include primary single phase cubicle and include MC-10000 for Single phase and MC-20000 for Three phase cubicles.

Correction: Under Notes correct “order” to “ordered”.

Removed “4 Wire, 3 Phase” from Title.(2004)

Added additional drawing for MC-10000 and include dimensions.

Included the description of wiring diagram and included commodity number for MC-20000 three phase units.

7.2) 19.2 (Drawing)

Added to drawing for 1 phase cubicle pad labeled P-93 and show dimensions.

Labeled 3 phase cubicle pad as P-94.

Correction Made- Note #4 – Correct “Manufacture’s” to “Manufacturer’s”.

7.3) 19.3 (Drawing)

Removed upper pole and switch from drawing and refer to the Distribution Construction Standard for Pole Top Fuse and By-Pass Construction for these specifications.

7.4) 19.4 (Drawing)
Removed upper pole and switch from drawing and refer to the Distribution Construction Standard for Pole Top Fuse and By-Pass Construction for these specifications

7.5) 19.5 (Drawing)

Removed upper pole and switch from drawing and refer to the Distribution Construction Standard for Pole Top Fuse and By-Pass Construction for these specifications

7.6) 19.6 (Drawing)

Removed upper pole and switch from drawing and refer to the Overhead Distribution Construction Standard Lineman Edition for Pole Top Fuse and By-Pass Construction for these specifications. Retained this location in the book for future use.

7.7) 19.8 (Drawing)

Added new drawing showing side profile for Primary Metering in Customer Owned Switchgear

7.8) 19.9 (Drawing)

Added new drawing showing front and side view of metering compartment for Primary Metering in Customer Owned Switchgear.

END OF REVISION CHANGES TO BLUEBOOK FOR 2007
<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>COMMODITY NUMBER</th>
<th>APPROX HEIGHT INCH</th>
<th>APPROX WIDTH INCH</th>
<th>APPROX DEPTH INCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>METER CABINET - 14 GA STEEL W/ HANGER</td>
<td>M-2090</td>
<td>33</td>
<td>16</td>
<td>12 TO 13</td>
</tr>
<tr>
<td>METER CABINET - 14 GA STEEL WITHOUT HANGER</td>
<td>M-2091</td>
<td>33</td>
<td>16</td>
<td>12 TO 13</td>
</tr>
<tr>
<td>METER CABINET - ALUM W/ HANGER</td>
<td>M-2092</td>
<td>33</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>METER CABINET - WITHOUT HANGER</td>
<td>M-2093</td>
<td>33</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>METER CABINET - STEEL W/ MOUNTING BARS</td>
<td>M-2119</td>
<td>40</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>METER CABINET - ALUM W/ MOUNTING BARS</td>
<td>M-2120</td>
<td>40</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>METER CABINET - ALUM WITHOUT BARS</td>
<td>M-2121</td>
<td>52</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>METER CABINET - 14 GAUGE STEEL</td>
<td>M-2122</td>
<td>52</td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td>CT CABINET - STEEL - SINGLE PHASE</td>
<td>M-2240</td>
<td>25</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>CT CABINET - ALUM - SINGLE PHASE</td>
<td>M-2241</td>
<td>25</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>CT CABINET - STEEL - THREE PHASE</td>
<td>M-2245</td>
<td>36</td>
<td>32</td>
<td>14</td>
</tr>
<tr>
<td>CT CABINET - ALUM - THREE PHASE</td>
<td>M-2246</td>
<td>36</td>
<td>32</td>
<td>14</td>
</tr>
<tr>
<td>METER SOCKET - ALUM T/R 3W, 3PH 8 TERM</td>
<td>M2390</td>
<td>20</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>METER SOCKET - STEEL T/R 3W, 3PH 8 TERM</td>
<td>M-2391</td>
<td>20</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>METER SOCKET - STEEL-T/R 4W, 3PH 13 TERM</td>
<td>M-2392</td>
<td>20</td>
<td>12</td>
<td>4 3/8</td>
</tr>
<tr>
<td>METER SOCKET - ALUM - T/R 4W, 3PH 13 TERM</td>
<td>M-2393</td>
<td>20</td>
<td>12</td>
<td>4 3/8</td>
</tr>
<tr>
<td>METER SOCKET - STEEL T/R 3W 1PH 6 TERM</td>
<td>M-2400</td>
<td>20</td>
<td>12</td>
<td>4 3/8</td>
</tr>
<tr>
<td>METER SOCKET - STEEL T/R 3W 1PH 6 TERM W/HUB</td>
<td>M-2402</td>
<td>17</td>
<td>12 3/10</td>
<td>4 7/8</td>
</tr>
<tr>
<td>METER SOCKET - ALUM - T/R 3W 1PH 6 TERM W/HUB</td>
<td>M-2403</td>
<td>17</td>
<td>12 3/10</td>
<td>4 7/8</td>
</tr>
<tr>
<td>METER SOCKET - STEEL S/C 3W 1PH 5 TERM W/BYP</td>
<td>M-2480</td>
<td>19</td>
<td>13</td>
<td>4 27/32</td>
</tr>
<tr>
<td>METER SOCKET - ALUM S/C 3W 1PH 5 TERM W/BYP</td>
<td>M-2481</td>
<td>19</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>METER SOCKET - STEEL S/C 3W 1PH 4 TERM</td>
<td>M-2500</td>
<td>14 TO 16</td>
<td>11 TO 13</td>
<td>4 TO 5</td>
</tr>
<tr>
<td>METER SOCKET - ALUM S/C 3W 1PH 4 TERM</td>
<td>M-2505</td>
<td>14 TO 16</td>
<td>11 TO 13</td>
<td>4 TO 5</td>
</tr>
<tr>
<td>METER SOCKET - 2 -GANG STEEL S/C 3W 1PH</td>
<td>M-2520</td>
<td>17 3/4 TO 19</td>
<td>24 1/2 TO 25 9/32</td>
<td>4 1/8 TO 4 7/8</td>
</tr>
<tr>
<td>METER SOCKET - STEEL S/C 3W 1PH 320A</td>
<td>M-2643</td>
<td>34 1/2 TO 35</td>
<td>15 TO 17 3/8</td>
<td>5 11/16 TO 6</td>
</tr>
<tr>
<td>METER SOCKET - ALUM S/C 3W 1PH 320A</td>
<td>M-2644</td>
<td>28 TO 36</td>
<td>12 8/10 TO 17 3/4</td>
<td>5 TO 6</td>
</tr>
<tr>
<td>METER SOCKET - STEEL-4W 3PH K-7 (*FOR REF ONLY)</td>
<td>M-2638</td>
<td>43</td>
<td>20</td>
<td>6 1/8</td>
</tr>
<tr>
<td>METER SOCKET - STEEL S/C 4W 3PH W/BYP</td>
<td>M-2650</td>
<td>19</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>METER SOCKET - STEEL S/C 4W 3PH W/BYP ISL NTRL</td>
<td>M-2652</td>
<td>19</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>METER SOCKET - ALUM S/C 4W 3PH W/BYP</td>
<td>M-2655</td>
<td>19</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>METER SOCKET - ALUM S/C 4W 3PH W/BYP ISL NTRL</td>
<td>M-2657</td>
<td>19</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>METER - TRANSOCKET - STEEL 4W 3PH 13 TERM</td>
<td>MC-600</td>
<td>36</td>
<td>25</td>
<td>11 1/4</td>
</tr>
<tr>
<td>METER - TRANSOCKET - ALUM 4W 3PH 13 TERM</td>
<td>MC-601</td>
<td>36</td>
<td>25</td>
<td>11 1/4</td>
</tr>
<tr>
<td>METER - TRANSOCKET - STEEL 3W 1PH 8 TERM</td>
<td>MC-602</td>
<td>36</td>
<td>25</td>
<td>11 1/4</td>
</tr>
<tr>
<td>METER - TRANSOCKET - ALUM 3W 1PH 8 TERM</td>
<td>MC-603</td>
<td>36</td>
<td>25</td>
<td>11 1/4</td>
</tr>
<tr>
<td>METER - PULSE CAN - SMALL</td>
<td>MC-1000</td>
<td>8</td>
<td>6</td>
<td>4 1/4</td>
</tr>
<tr>
<td>METER - PULSE CAN - LARGE</td>
<td>MC-1001</td>
<td>15 1/2</td>
<td>8</td>
<td>4 1/8</td>
</tr>
<tr>
<td>METER - CELL PHONE BOX</td>
<td>MC-1002</td>
<td>23 7/8</td>
<td>16</td>
<td>5 3/8</td>
</tr>
<tr>
<td>METER - CUBICLE SINGLE PHASE PRIM</td>
<td>MC-10000</td>
<td>54</td>
<td>31</td>
<td>54</td>
</tr>
<tr>
<td>METER - CUBICLE THREE PHASE PRIM</td>
<td>MC-20000</td>
<td>54</td>
<td>79</td>
<td>54</td>
</tr>
<tr>
<td>METER - CUBICLE-PAD SINGLE PHASE PRIM</td>
<td>P-93</td>
<td>4</td>
<td>62</td>
<td>39</td>
</tr>
<tr>
<td>METER - CUBICLE-PAD THREE PHASE PRIM</td>
<td>P-94</td>
<td>8</td>
<td>100</td>
<td>78</td>
</tr>
<tr>
<td>METER PEDESTAL - CHANNEL IRON</td>
<td>P-976</td>
<td>8 FT</td>
<td>6 IN</td>
<td>2</td>
</tr>
</tbody>
</table>
GPC Meter & Socket Selection Chart

(For Customer Furnished Socket Information, see Blue Book Section 9.0-E)

<table>
<thead>
<tr>
<th>Service Type</th>
<th>Amps</th>
<th>Socket</th>
<th>Meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Wire</td>
<td>Up to 100 A</td>
<td>M-2500</td>
<td>Form 1S Class 100</td>
</tr>
<tr>
<td>120 Volt</td>
<td></td>
<td>M-2500 (RESIDENTIAL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-2480* (COMMERCIAL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Must have jumper installed from neutral to top right lug.</td>
<td></td>
</tr>
<tr>
<td>3 Wire</td>
<td>Up to 225 A</td>
<td>M-2500</td>
<td>Form 2S Class 200</td>
</tr>
<tr>
<td>120/240 Volt</td>
<td>226 – 400 A</td>
<td>M-2643</td>
<td>Form 2S Class 320</td>
</tr>
<tr>
<td></td>
<td>401 – 600 A</td>
<td>MC602 TRANSOCKET</td>
<td>Form 5S Class 20</td>
</tr>
<tr>
<td></td>
<td>Above 600 A</td>
<td>M-2400**</td>
<td>Form 4S Class 20</td>
</tr>
<tr>
<td>Single Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Wire</td>
<td>Up to 225 A</td>
<td>M-2480</td>
<td>Form 12S*** Class 200</td>
</tr>
<tr>
<td>120/208 Volt</td>
<td>226 – 400 A</td>
<td>M-2643</td>
<td>Form 12S*** Class 320</td>
</tr>
<tr>
<td></td>
<td>401 – 600 A</td>
<td>MC602 TRANSOCKET</td>
<td>Form 5S Class 20</td>
</tr>
<tr>
<td></td>
<td>Above 600 A</td>
<td>M-2391**</td>
<td>Form 5S Class 20</td>
</tr>
<tr>
<td>Three Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Wire</td>
<td>Up to 225 A</td>
<td>M-2650</td>
<td>Form 16S Class 200</td>
</tr>
<tr>
<td>120/208 Volt Wye</td>
<td>226 – 600 A</td>
<td>MC600 TRANSOCKET</td>
<td>Form 9S Class 20</td>
</tr>
<tr>
<td>277/480 Volt Wye</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120/240 Volt Delta</td>
<td>Above 600 A</td>
<td>M-2392**</td>
<td>Form 9S Class 20</td>
</tr>
<tr>
<td>Three Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Wire</td>
<td>Up to 225 A</td>
<td>M-2480</td>
<td>Form 12S Class 200</td>
</tr>
<tr>
<td>240 Volt Delta</td>
<td>Bonding strap must be removed</td>
<td>Form 12S Class 200</td>
<td></td>
</tr>
<tr>
<td>480 Volt Delta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>226 – 600 A</td>
<td>MC602 TRANSOCKET</td>
<td>Form 5S Class 20</td>
</tr>
<tr>
<td></td>
<td>Bonding strap must be removed</td>
<td>Form 5S Class 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Above 600 A</td>
<td>M-2391**</td>
<td>Form 5S Class 20</td>
</tr>
<tr>
<td>Three Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Wire</td>
<td>Any</td>
<td>M-2391**</td>
<td>Form 5S Class 20 (With 5:1 PTs)</td>
</tr>
</tbody>
</table>

Note: All sockets listed above have steel enclosures. Aluminum versions are for use in coastal areas only and are listed on “Socket and Cabinet Sizes” chart.

* The M-2480 socket is equipped with a bypass handle for commercial use.

** These sockets are used in conjunction with either a CT cabinet or CTS mounted on an overhead bracket. The M-2090 or M-2091 cabinet may be used in place of the M-2400, M-2391, and M-2392 transformer-rated sockets if it is desirable to have the meter fully enclosed.

*** The Form 2S meter cannot be used in place of the Form 12S meter because it will only register 75% of phase-to-neutral load on 120/208 volt service.

Class 20 meters are transformer-rated meters. A TRANSFORMER RATED METERING EQUIPMENT ISSUE RECORD (FORM # F-FOP-017-A) APPROVED BY A QUALIFIED METERING SERVICES EMPLOYEE IS REQUIRED BEFORE ANY TRANSFORMER-RATED EQUIPMENT IS ISSUED.
THE END

GEORGIA POWER COMPANY
ELECTRICAL SERVICES AND METERING INSTALLATIONS
BLUE BOOK 2007